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Abstract

Evaluating the performance of low-light image en-
hancement (LLE) is highly subjective, thus making
integrating human preferences into image enhance-
ment a necessity. Existing methods fail to con-
sider this and present a series of potentially valid
heuristic criteria for training enhancement mod-
els. In this paper, we propose a new paradigm,
i.e., aesthetics-guided low-light image enhance-
ment (ALL-E), which introduces aesthetic prefer-
ences to LLE and motivates training in a reinforce-
ment learning framework with an aesthetic reward.
Each pixel, functioning as an agent, refines itself by
recursive actions, i.e., its corresponding adjustment
curve is estimated sequentially. Extensive exper-
iments show that integrating aesthetic assessment
improves both subjective experience and objective
evaluation. Our results on various benchmarks
demonstrate the superiority of ALL-E over state-of-
the-art methods. Source code: https://dongl-group.
github.io/project pages/ALLE.html

1 Introduction
1Due to the limitations inherent in optical devices and the
variability of external imaging conditions, images are often
captured with poor lighting, under-saturation, and a narrow
dynamic range. These degradation factors significantly im-
pair the visual aesthetics of the images, and lead to detrimen-
tal effects on a wide range of downstream computer vision
and multimedia tasks [Yu et al., 2021b; Cho et al., 2020;
Guo et al., 2020]. Manually editing and enhancing low-light
images is time-consuming, even for a professional. There-
fore, many learning-based strategies have been proposed, in-
troducing a series of potentially valid heuristic constraints
for training image enhancement models [Lore et al., 2017;
Wei et al., 2018; Zhang et al., 2019; Xu et al., 2020;
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(a) Normal images with an av-
erage Aesthetic Score 7.081

(b) Low-light images with an
average Aesthetic Score 5.694

Figure 1: Sample images on DPChallenge protect1. Each image
receives dozens to hundreds of user ratings, ranging from 1 to 10.
Higher scores indicate higher aesthetic quality.

Ren et al., 2019; Liang et al., 2022]. However, the afore-
mentioned methods fail to account for the importance of sub-
jective human evaluation in low-light image enhancement
(LLE) tasks. On an online professional photography contest –
DPChallenge2, the subjective human aesthetic scores of nor-
mal images are much higher than those of low-light images,
and the former provides a significantly superior visual expe-
rience compared to the latter, as shown in Fig. 1. In light of
this observation, we propose a novel LLE paradigm incorpo-
rating aesthetic assessment to effectively model human sub-
jective preferences and improve both subjective experience
and objective evaluation of the enhanced images.

However, embedding aesthetic assessment into LLE is
non-trivial, as aesthetics are highly subjective and personal-
ized evaluations that vary between individuals. These person-
alized user preferences can bring confusion to model learn-
ing. In addition, the manual aesthetic retouching of pho-
tographs is a highly causal and progressive process, which
is difficult to replicate using existing LLE methods. To tackle
these challenges, we propose the following solutions. First,
we introduce a well-trained ‘aesthetic oracle network’ to con-
struct an Aesthetic Assessment Module that can produce gen-
eral aesthetic preferences, reducing penalization and increas-
ing the method’s versatility and aesthetic appeal. Second, we
apply reinforcement learning to interact with the environment
(i.e., the Aesthetic Assessment Module) to calculate rewards;
we treat LLE as a Markov decision process, decomposing
the augmented mapping relationship into a series of itera-

2https://www.dpchallenge.com/



tions through an Aesthetic Policy Generation Module, thus
realizing progressive LLE adjustment. Third, we develop a
group of complementary rewards, including aesthetics qual-
ity, feature preservation, and exposure control, to preserve
better subjective visual experience and objective evaluation.
All the rewards are non-reference, indicating that they do not
require paired training images.

The main contributions of this paper are three-fold:

• We propose a new paradigm for LLE by integrating aes-
thetic assessment, leveraging aesthetic scores to mimic
human subjective evaluations as a reward to guide LLE.
To our knowledge, this is the first attempt to solve low-
light image enhancement using aesthetics.

• We devise aesthetics-guided LLE (ALL-E) through rein-
forcement learning and treat LLE as a Markov decision
process, which divides the LLE process into two phases:
aesthetic policy generation and aesthetic assessment.

• Our method is evaluated against state-of-the-art com-
petitors through comprehensive experiments in terms of
visual quality, no- and full-referenced image quality as-
sessment, and human subjective surveys. All results
consistently demonstrate the superiority of ALL-E.

2 Related Work
Low-Light Image Enhancement
Traditional Approaches. Early efforts commonly presented
heuristic priors with empirical observations to address the
LLE problems [Pizer et al., 1990; Land, 1977; Guo et al.,
2016]. Histogram equalization [Pizer et al., 1990] used a cu-
mulative distribution function to regularize the pixel values
to achieve a uniform distribution of overall intensity levels in
the image. The Retinex model [Land, 1977] and its multi-
scale version [Jobson et al., 1997] decomposed the bright-
ness into illumination and reflections, which were then pro-
cessed separately. Guo et al. [Guo et al., 2016] introduced a
structural prior before refining the initially obtained illumina-
tion map and synthesizing the enhanced image according to
the Retinex theory. However, these constraints/priors must be
more self-adaptive to recover image details and color, avoid-
ing the washing out details, local under/over-saturation, un-
even exposure, or halo artifacts.
Deep Learning Approaches. Lore et al. [Lore et al., 2017]
proposed a variant of the stacked sparse denoising autoen-
coder to enhance the degraded images. RetinexNet [Wei et
al., 2018; Zhang et al., 2019] leveraged a deep architecture
based on Retinex to enhance low-light images. RUAS [Liu et
al., 2021] constructed the overall LLE network architecture
by unfolding its optimization process. EnlightenGAN [Jiang
et al., 2021] introduced GAN-based unsupervised training on
unpaired normal-light images for LLE. Zero-DCE [Guo et al.,
2020] transformed the LLE task into an image-specific curve
estimation problem. SCL-LLE [Liang et al., 2022] cast the
image enhancement task as multi-task contrast learning with
unpaired positive and negative images and enabled interac-
tion with scene semantics. However, all the above methods
ignore the human subjective preferences of LLE.

Aesthetic Quality Assessment
Although there is no aesthetics-guided LLE method, and the
focus of LLE is not on assessing the aesthetic quality of a
given image, our work relates to this research domain in the
sense that LLE aims at improving image quality.

Image aesthetics has become a widely researched topic in
current computer vision. Image aesthetic quality assessment
aims to simulate human cognition and perception of beauty to
automatically predict how beautiful an image looks to a hu-
man observer. Previous attempts have trained convolutional
neural networks for binary classification of image quality [Lu
et al., 2014; Ma et al., 2017] or aesthetic score regression
[Kong et al., 2016]. Assessing visual aesthetics has practical
applications in areas such as image retrieval [Yu and Moon,
2004], image recommendation [Yu et al., 2021a], and color
correction [Deng et al., 2018].

Since the highly differentiated aesthetic preference, im-
age aesthetics assessment can be divided into two categories:
generic and personalized image aesthetics assessment (GIAA
and PIAA)[Ren et al., 2017]. [Ren et al., 2017] addressed
PIAA problem by leveraging GIAA knowledge on user-
related data so that that model can capture aesthetic ”off-
set”. Later, research work attempted to learn PIAA from var-
ious perspectives, such as multi-modal collaborative learning
[Wang et al., 2018], meta-learning [Zhu et al., 2020], multi-
task learning [Li et al., 2020] etc. Due to the high subjectivity
of PIAA tasks, which pay more attention to the differences
in personality factors, we aim to introduce ”general aesthetic
preferences”/generic image aesthetics assessment (GIAA) to
LLE. To our knowledge, the proposed scheme in this paper
is the first attempt to solve the LLE problem using aesthet-
ics to preserve better both subjective visual experience and
objective evaluation.

Reinforcement Learning for Image Processing
After deep Q-network achieved human-level performance on
Atari games, there has been a surge of interest in deep rein-
forcement learning (DRL). For image-processing tasks, Yu et
al. [Yu et al., 2018] proposed RL-Restore to learn a policy of
selecting appropriate tools from a predefined toolbox to re-
store the quality of corrupted images gradually. Park et al.
[Park et al., 2018] presented a DRL-based method for color
enhancement and a distortion-recovery training scheme that
only requires high-quality reference images for training.

While these methods focus on global image restoration,
Furuta et al. [Furuta et al., 2019] proposed pixelRL to enable
pixel-wise image restoration, which extended DRL to pixel-
level reinforcement learning, making it more flexible in deal-
ing with image problems. Similarly, Zhang et al. [Zhang et
al., 2021a] proposed a novel DRL-based method for achiev-
ing LLE at the pixel level. In contrast, our DRL network
learns with an image aesthetic reward to obtain LLE results
that try to satisfy universal users.

3 Methodology
3.1 From Aesthetic Annotation to LLE
Many factors can affect the beauty of images, including the
richness of color, correct exposure, depth of view, resolution,
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Figure 2: Overall architecture of the proposed ALL-E. It includes an aesthetic policy generation module and an aesthetic assessment module.

high-level semantics, and so on. Previous work [Lu et al.,
2014; Ma et al., 2017; Kong et al., 2016; Yu and Moon, 2004]
have preliminarily analyzed these factors to generate the aes-
thetic rating of an image, facilitating manual aesthetic anno-
tation for downstream tasks.

As aesthetics is a highly subjective and personalized evalu-
ation with individual differences, [Kang et al., 2020] modeled
an aesthetic mean opinion score (AMOS) as a weighted sum
of its four relatively independent attributes to generate more
reliable aesthetic annotation,

AMOS ∼= 0.288f1 + 0.288f2 + 0.082f3 + 0.342f4 (1)

where f is the scores of attribute index {1, 2, 3, 4} of an im-
age. 1 is the light/color attribute, 2 is the composition and
depth attribute, 3 is the imaging quality attribute, and 4 is
the semantic attribute. To derive the specific importance (the
weight values) in AMOS, [Kang et al., 2020] directly elicited
from more than 30 observers the importance of each attribute
in forming their overall aesthetic opinion. The observers had
to indicate which factor(s) influenced their overall aesthetic
score among the rated attributes. From Eq.(1), we observe
that light/color is one of the three most important attributes,
contributing approximately 30%. Another work [Yang et al.,
2022] utilizes a Pearson correlation coefficient between the
light condition of an image and its aesthetic rating, archiving
a high correlation coefficient of 0.67.

Motivated by the above findings, we propose an aesthetics-
guided LLE. The first step is to select an aesthetic ‘oracle’
that can provide general aesthetic preferences with versatil-
ity and reflect popular aesthetics. In our implementation,
we employ a lightweight aesthetic network [Esfandarani and
Milanfar, 2018] with a VGG-16 backbone as the aesthetic
‘oracle’, trained on the AVA dataset [Murray et al., 2012].
Though NIMA [Esfandarani and Milanfar, 2018] (81.5%)
stands at the middle level in terms of accuracy (DMA-Net
[Lu et al., 2015] 75.4%; MTCNN [Kao et al., 2017] 79.1%;
Pool-3FC [Hosu et al., 2019] 81.7%; ReLIC [Zhao et al.,
2020] 82.35%), NIMA is with less computational complex-
ity compared with other available models (ReLIC with a
MobileNetV2 backbone has 2.7 times more parameters than
NIMA with a MobileNetV1 backbone, while MobileNetV2
has fewer parameters than MobileNetV1). AVA is a database
with 250,000 photos evaluated for aesthetic quality, with
crowd-sourcing voting on the aesthetics for each image (from

78 to 549 people for each image). The aesthetic oracle net-
work pre-trained on this vast dataset yields trustworthy pref-
erences for broad aesthetics.

Since human aesthetic image retouching is a dynamically
and explicitly progressive process that causally interacts with
the current state of the image, we treat LLE as a Markov
decision process, decomposing it into a series of iterations.
To mimic this process, we design a reinforcement-learning-
based Aesthetic Policy Generation Module, which interacts
with the environment – Aesthetic Assessment Module to ob-
tain rewards and provide optimized actions to realize progres-
sive LLE adjustment. As shown in Fig. 2, our ALL-E consists
of an Aesthetic Policy Generation Module based on an asyn-
chronous advantage actor-critic network (A3C) [Mnih et al.,
2016] to generate the action At, and an Aesthetic Assessment
Module based on an aesthetic oracle network [Esfandarani
and Milanfar, 2018] and a series of loss function to gener-
ate the reward rt. At the t-th step, given an image st, the
Aesthetic Policy Generation Module generates an enhanced
image st+1 via At, which is then fed to the Aesthetic As-
sessment Module to generate rt, then progressively complete
image enhancement until n steps.

3.2 Aesthetic Policy Generation
The reason to use A3C [Mnih et al., 2016] is that it reports
pixel-wise action performance with efficient training. A3C
is an actor-critic method consisting of two sub-networks: a
value network and a policy network denoted as θv and θp,
respectively. Both networks use the current state image st

as the input at the t-th step. The value network outputs the
value V (st), which represents the expected total discounted
rewards from state st to sn, and indicates how good the cur-
rent state is:

V (st) = E
[
Rt | st

]
(2)

where Rt is the total discounted reward:

Rt =

n−t−1∑
i=0

γirt+i + γn−tV (sn) (3)

where γi is the i-th power of the discount factor γ, rt is the
immediate reward (will be introduced in Section 3.4) at t-th
step. As some actions can affect the reward after many steps
by influencing the environment, reinforcement learning aims



to maximize the total discounted reward Rt rather than the
immediate reward rt.

The gradient for θv is computed as follows:

dθv = ▽θv (R
t − V (st))2 (4)

The policy network outputs the probability of taking action
At ∈ A.S. (the action space, will be introduced in the follow-
ing subsection) through softmax, denoted as π(At|st). The
output dimension of the policy network is equal to |A|.

To measure the rationality of selecting a specific action At

in a state st, we define the advantage function as:

G(At, st) = Rt − V (st) (5)

It directly gives the difference between the performance of ac-
tion At and the mean value of the performance of all possible
actions. If this difference (i.e. the advantage of the chosen ac-
tion) is greater than 0, then it indicates that action At is better
than the average and is a reasonable choice; if the difference
is less than 0, then it implies that action At is inferior to the
average and should not be selected.

The gradient for θp is computed as follows:

dθp = −▽θp log π(A
t|st)G(At, st) (6)

3.3 Action Space Setting
Human experts often manually retouch photographs through
curve adjustments in retouching software, where the curve
parameters depend only on the input image. Usually, curves
for challenging low-light images are of a high order. [Guo
et al., 2020] suggests that this procedure can be realized by
recurrently applying the low-order curves. In this work, we
apply a second-order pixel-wise adjustment curve (PAC) at
each step t. We enhance an input image st by iteratively ap-
plying a PAC-based action At(x) at the t-th step,

st+1(x) = st(x) +At(x)st(x)(1− st(x)) (7)

where x denotes the pixel coordinates. Eq.(7) models the en-
hancement of a low-light image as a sequential action-making
problem by finding the optimal pixel-wise parameter map
At(x) for light adjustment curves at each step t. Therefore,
our optimization goal is to find an optimal light adjustment
action sequence. To achieve this, we need a metric (the re-
ward) to measure the light aesthetic of an image st. The exact
calculation is described in the following subsection.

Fundamentally, low-light image enhancement can be re-
garded as the search for a mapping function F , such that
sH = F (sL) is the desired image, which is enhanced from
the input image sL. In our design, the mapping function F
is represented as the ultimate form of multiple submappings{
A1, A2, . . . , An

}
continuously and iteratively augmented,

where At is constrained in a predetermined range of the ac-
tion space (A.S.). The range of A.S. is crucial to the per-
formance of our method, as too narrow a range will result
in insufficient improvements, and too extensive a range will
result in excessive search space.

Here, we empirically set the range of A.S. ∈ [−0.5, 1] with
a graduation interval 1/18. This setting ensures that:

1) The brightness of each pixel is in the normalized range
[0, 1], according to Eq.(7);

2) As the brightness of some pixels may need to be re-
duced, a negative range [−0.5, 0] is also set;

3) PAC is monotonous while also alleviating the cost of
searching for suitable PAC for low-light image enhancement.

3.4 Reward Function
This section introduces three complementary rewards, includ-
ing aesthetics quality, feature preservation, and exposure con-
trol, to preserve better subjective visual experience and objec-
tive evaluation. Note that all the rewards are non-reference,
requiring no paired training images.

Aesthetics Quality Reward. As mentioned above, the
aesthetic quality score of an image is closely correlated with
several factors. In this work, we focus on dynamically ad-
justing and improving the brightness by the aesthetic score of
an image. Therefore, utilizing the aesthetic score as a direct
reward function would be an inadequate representation of the
desired outcome. Instead, the difference in aesthetic scores
between the original and enhanced images is employed as the
reward for the currently selected action. The image aesthetics
quality reward rtaes is:

rtaes =

K∑
k=1

k(Pk(s
t+1)− Pk(s

t)) (8)

where K denotes the range of ratings for the aesthetic scores
of the images, i.e., [1, 10], and P denotes the probability of
each rating. st denotes the state of the image at t-th step, st+1

denotes the state of the image at t+ 1-th step.
Feature Preservation Reward. Since color naturalness is

a concern in low-light image enhancement, we introduce a
color constancy term incorporating an illumination smooth-
ness penalty term as the feature preservation reward. It is
based on the gray-world color constancy hypothesis [Buchs-
baum, 1980; Guo et al., 2020], which posits that the average
pixel values of the three channels tend to be of the same value.
rtfea constrains the ratio of the three channels to prevent po-
tential color deviations in the enhanced image. In addition,
to avoid aggressive and sharp changes between neighboring
pixels, an illumination smoothness penalty term is also em-
bedded in rtfea =

∑
∀(p,q)∈ξ

(Jp − Jq)2 + λ
1

n

n∑
t=1

∑
p∈ξ

(
∣∣▽x(A

t)
p∣∣+ ∣∣▽y(A

t)
p∣∣) (9)

where ξ = {R,G,B}, Jp denotes the average intensity value
of p channel in an image, (p, q) represents a pair of channels,
n is the number of the steps, and ▽x and ▽y denote the hor-
izontal and vertical gradient steps, respectively. We set λ to
100 in our experiments to achieve the best results.

Exposure Control Reward. The exposure control reward
rtexp, which is a loss function widely used in the recent lit-
erature [Guo et al., 2020; Zhang et al., 2021a], measures the
deviation of the average intensity value of a local region from
a predefined well-exposedness level in RGB color space:

rtexp =
1

B

B∑
b=1

|Yb − E| (10)



(a) Input (b) LIME (c) Retinex-Net (d) ISSR (e) Zero-DCE

(f) EnlightenGAN (g) RUAS (h) ReLLIE (i) SCL-LLE (j) Ours

Figure 3: Examples of enhancement results on LOL test dataset.

Methods NIQE ↓ UNIQUE ↑ PSNR ↑ SSIM ↑ User study↓
Input 6.749 -0.144 7.773 0.194 4.333

(TIP’17) LIME 8.058 0.333 14.221 0.521 3.855
(BMVC’18) Retinex-Net 8.879 -0.026 16.774 0.424 3.277

(ACMMM’20) ISSR 3.872 0.739 12.469 0.525 3.950
(CVPR’20) Zero-DCE 7.767 0.335 14.860 0.562 3.286

(TIP’21) EnlightenGAN 5.807 0.546 17.654 0.666 3.156
(CVPR’21) RUAS 6.340 0.427 16.405 0.503 3.431

(ACMMM’21) ReLLIE 4.535 1.133 19.454 0.756 2.677
(AAAI’22) SCL-LLE 4.571 0.544 12.354 0.591 3.270

Ours 3.774 1.227 18.216 0.763 2.450

Table 1: NIQE ↓, UNIQUE ↑, PSNR ↑, SSIM ↑ and User study ↓ scores on LOL test dataset.

Methods DICM LIME MEF VV NPE Average
NIQE UN. NIQE UN. NIQE UN. NIQE UN. NIQE UN. NIQE UN.

Input 4.26 0.72 4.36 0.70 4.26 0.72 3.52 0.74 4.32 1.17 4.13 0.75
(TIP’17) LIME 3.75 0.78 3.85 0.53 3.65 0.65 2.54 0.44 4.44 0.93 3.55 0.69

(BMVC’18) Retinex-Net 4.47 0.75 4.60 0.52 4.41 0.97 2.70 0.36 4.60 0.81 4.13 0.69
(ACMMM’20) ISSR 4.14 0.59 4.17 0.83 4.22 0.87 3.57 0.62 4.02 0.99 4.03 0.68

(CVPR’20) Zero-DCE 3.56 0.82 3.77 0.73 3.28 1.22 3.21 0.48 3.93 1.07 3.50 0.81
(TIP’21) EnlightenGAN 3.55 0.63 3.70 0.49 3.16 1.03 3.25 0.58 3.95 1.07 3.47 0.69

(CVPR’21) RUAS 5.21 -0.17 4.26 0.34 3.83 0.73 4.29 -0.04 5.53 0.13 4.78 0.04
(AAAI’22) SCL-LLE 3.51 0.87 3.78 0.76 3.31 1.25 3.16 0.49 3.88 1.08 3.46 0.85

(CVPR’22)Uretinex-net 3.95 0.85 4.34 0.93 3.79 1.18 3.01 0.51 4.69 0.99 3.83 0.84
(ICCV’21)Zhao et al. 3.68 0.91 4.16 0.79 3.83 0.97 3.01 0.57 3.69 1.06 3.61 0.84
(CVPR’22)Ma et al. 4.11 0.11 4.21 0.35 3.63 1.04 2.92 0.05 4.47 0.21 3.87 0.35

Ours 3.49 0.88 3.78 0.80 3.32 1.27 3.08 0.49 3.85 1.10 3.45 0.88

Table 2: NIQE ↓ and UNIQUE (UN.) ↑ scores on DICM, LIME, MEF, VV, and NPE datasets.

where B represents the number of non-overlapping local re-
gions of size 16×16, Yb is the average intensity value of
a local region b in st+1. According to [Guo et al., 2020;
Zhang et al., 2021a], E is set to 0.6. For a given enhanced
image, the immediate reward rt at a current state st is:

rt = w1r
t
aes − w2r

t
fea − w3r

t
exp (11)

where w1, w2 and w3 are tunable hyperparameters. As intro-
duced in Section 3.2, the goal of reinforcement learning is to
maximize the total discounted reward Rt in Eq.(3) with this
immediate reward rt.

3.5 Efficient Training Details
We use 485 low-light images of the LOL dataset [Wei et al.,
2018] to train the proposed framework. We resize the train-
ing images to the size of 244×244. The maximum number of
training epochs was set to 1000, with a batch size of 2. We
train our framework end-to-end while fixing the weights of

the aesthetic oracle network. Our framework is implemented
in PyTorch on an NVIDIA 1080Ti GPU. The model is opti-
mized using the Adam optimizer with a learning rate of 1e−4.
The total number of steps in the training phase is set to n = 6.
In accordance with the training phase, the total number of
steps is also set to n = 6 in the testing phase. Under these
settings, training 1000 epochs costs about one day.

4 Experiments
4.1 Benchmark Evaluations
We compare our method with several state-of-the-art meth-
ods: LIME [Guo et al., 2016], Retinex-Net [Wei et al., 2018],
ISSR [Fan et al., 2020], Zero-DCE [Guo et al., 2020], En-
lightenGAN [Jiang et al., 2021], RUAS [Liu et al., 2021],
ReLLIE [Zhang et al., 2021a], SCL-LLE [Liang et al., 2022],
Uretinex-net[Wu et al., 2022], Zhao et al.[Zhao et al., 2021],
Ma et al.[Ma et al., 2022]. The results of the above meth-



(a) Input (b) LIME (c) Retinex-Net (d) ISSR (e) Zero-DCE

(f) EnlightenGAN (g) RUAS (h) ReLLIE (i) SCL-LLE (j) Ours

Figure 4: Comparison of our method and the state-of-the-art methods over LIME dataset with zoom-in regions. Our method enables the
enhanced images to look more realistic and recovers better details in both foreground and background.

ods are reproduced by the publicly available models provided
with the recommended test settings. To thoroughly evaluate
the proposed method, a comprehensive set of experiments
were conducted, including a visual quality comparison, im-
age quality assessment, and human subjective survey, which
are discussed in the following sections.

Visual Quality Comparison
We present the visual comparisons on typical low-light im-
ages in LOL test dataset [Wei et al., 2018] and LIME [Guo
et al., 2016] dataset. We first investigate whether the pro-
posed method achieves visually pleasing results in terms of
brightness, color, contrast, and naturalness. We observe from
Fig. 3 and Fig. 4 that the images enhanced by our method
are aesthetically acceptable and do not cause any discernible
noise and artifacts. Specifically, LIME causes color artifacts
at strong local edges; Retinex-Net and EnlightenGAN cause
local color distortion and lack of detail; ISSR and RUAS pro-
duce severe global and local over/under-exposure; Zero-DCE
and SCL-LLE under-enhance extremely dark images, while
ReLLIE over-enhances.

Fig. 5 demonstrates the visualization of the enhancing pro-
cedure of the proposed method. As the enhancement steps t
progress, the image’s brightness increases. In our test exper-
iments, step t = 6 yields the best visual performance, which
is rational as the total number of steps is set to n = 6 in the
training phase. When continuing to enhance the image with
an additional step (t = 7), the image may tend to be over-
enhanced, as shown in Fig. 5 (h). After many experiments,
we found that t = 6 is the global best in most cases. in prac-
tice, the optimal enhancement step for a specific image may
be different. The image sequences of all steps can be listed
for people to choose their preferred one.

Image Quality Assessment (IQA)
For quantitative comparison, we use two non-reference eval-
uation indicators, Natural Image Quality Evaluator (NIQE)
[Mittal et al., 2013], and UNIQUE [Zhang et al., 2021b].
NIQE is a well-known no-reference image quality assess-

ment for evaluating image restoration without ground truth
and providing quantitative comparisons. Since NIQE is re-
garded as poorly correlated with subjectivity, we also adopt
UNIQUE, a metric for non-reference evaluation that is more
rational and closer to subjective human opinion.

For full-reference image quality assessment, we employ
the Peak Signal-to-Noise Ratio (PSNR, dB) and Structural
Similarity (SSIM) metrics to compare the performance of var-
ious approaches quantitatively.

Table 1 and 2 summarizes the performances of our tech-
nique and thetechnique state-of-the-art methods on the test
images of LOL test dataset [Wei et al., 2018], DICM [Lee et
al., 2012], LIME [Guo et al., 2016], MEF [Ma et al., 2015],
VV1, and NPE [Wang et al., 2013]. DICM, LIME, MEF,
VV, NPE are ad hoc test datasets, including 64, 10, 8, 24, 17
images, respectively. They are widely used in LLE testing:
SCL-LLE [Liang et al., 2022], EnlightenGAN [Jiang et al.,
2021], Zero-DCE [Guo et al., 2020] et al.. Images in them
are diverse and representative: DICM is mainly landscaped
with extreme darkness; LIME focuses on dark street land-
scapes; MEF focuses on dark indoor scenes and buildings;
VV is mostly backlit and portraits; NPE mainly includes nat-
ural scenery in low light. Note that only the PSNR of our
method is not ranked first. We believe this is because the aes-
thetic reward focuses more on the global aesthetic evaluation
and is insufficiently responsive to local noise.

Human Subjective Survey
We conduct a human subjective survey (user study) for com-
parisons. Each image in the LOL test dataset was enhanced
by nine methods (LIME, Retinex-Net, ISSR, Zero-DCE, En-
lightenGAN, RUAS, ReLLIE, SCL-LLE, and our approach),
25 human volunteers were asked to rank the enhanced im-
ages. These subjects are instructed to consider: 1) Whether or
not noticeable noise is present in the images; 2) If the images
contain over or underexposure artifacts; 3) Whether or not the
images display non-realistic color or texture distortion.

1https://sites.google.com/site/vonikakis/datasets
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Figure 5: An example of the proposed method with different enhancement steps.

(a) Input (b) w/o rtaes (c) Baseline A.S. settings (d) Ours (e) Ground truth

Figure 6: Ablation study on the contribution of each component.

We assign each image a score between 1 and 5; the lower
the value, the higher the image quality. The final results are
shown in Table 1. We can see that our method achieves the
highest score.

4.2 Ablation Study
To demonstrate the effectiveness of the aesthetic rewards and
the action space configuration proposed by our technique, we
performed several ablation experiments. Since rtfea and rtexp
are demonstrated to be valid in the recent literature [Guo et
al., 2020; Zhang et al., 2021a], we consider them to be the
baseline rewards without ablation studies on them.

Action Space and Aesthetics Quality Reward. Regard-
ing the the action space (A.S.) settings, the baseline follows
[Zhang et al., 2021a]: the range of A.S. ∈ [−0.3, 1] with
graduation as 0.05. In comparison, our settings fall within the
range of A.S. ∈ [−0.5, 1] with a graduation of 1/18. Specif-
ically, we design two experiments by removing the aesthetics
quality reward component and keeping the baseline settings.

Subjective Experience. The visualization of the effects
of action space and aesthetics quality reward rtaes are shown
in Fig. 6. The absence of rtaes rendered the image gloomy
and unappealing, while improper action space settings led to
overexposure in certain portions of the enhanced image.

Objective Evaluation. Table 3 shows the NIQE,
UNIQUE, PSNR, and SSIM scores under each experiment.
Note that, from Table 3, the absence of rtaes does not appear
to have a significant impact on the overall outcomes; how-
ever, the absence of a suitable action space (A.S.) setting ap-
pears to have a significant negative impact on performance.
Since our experimental setup relies on the presence of differ-
ent settings of the action space and image aesthetics quality
reward, the absence of any component would result in sub-

par results. The aesthetics-guided action space setting can
achieve the best results.

Our method can be seen as a compromise between aesthet-
ics and Image Quality Assessment (IQA). In some specific
scenarios, there would be situations where a high aesthetic
score with poor IQA. The Aesthetics Quality Reward raes
considers general aesthetics, while the Feature Preservation
Reward rfea and the Exposure Control Reward rexp in our
method ensure relatively good IQA.

Our A.S. rtaes NIQE ↓ UNIQUE ↑ PSNR ↑ SSIM ↑
4.822 1.131 13.920 0.697

✓ 4.766 1.221 15.211 0.723
✓ 4.131 0.912 14.526 0.682

✓ ✓ 3.774 1.227 18.216 0.763

Table 3: Ablation study. NIQE ↓, UNIQUE ↑, PSNR ↑ and SSIM ↑
scores on LOL test dataset.

5 Conclusion
We have proposed an effective aesthetics-guided reinforce-
ment learning method to solve the LLE problem. ALL-E il-
lustrates how we can leverage aesthetics to balance the sub-
jective and the output. Unlike most existing learning-based
methods, using the aesthetic policy generation and aesthetic
assessment modules, our method treats LLE as a Markov de-
cision process to realize progressive learning. With aesthetic
assessment scores as a reward, general human subjective pref-
erences are introduced, which aids in producing aesthetically
pleasing effects, i.e. it interacts with the environment (aes-
thetic assessment module) to yield a reward to mimic a hu-
man’s image retouching process.
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