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Abstract

An illumination-invariant background model for detect-
ing objects in dynamic scenes is proposed. It is robust in
the cases of sudden illumination fluctuation as well as burst
moving background. Unlike previous works, it distinguishes
objects from a dynamic background using co-occurrence
character between a target pixel and its supporting pixels in
the form of multiple pixel pairs. Experiments used several
challenging datasets that proved the robust performance of
object detection in various environments.

1. Introduction
Object detection suffers from dynamic scenes, especially

two types of potentially serious cases: (1) sudden illumina-
tion variation, such as outdoor sunlight changes and indoor
lights on/off; (2) burst physical motion, such as indoor ar-
tificial objects motion including fans, escalators and auto-
doors. State-of-the-art algorithms [8, 5, 1, 2, 4] can han-
dle gradual illumination changes by updating the statistical
background models progressively as time goes by. Gener-
ally, this kind of model update is usually relatively slow to
avoid mistakenly integrating foreground elements into the
background, making it difficult to adapt to sudden illumina-
tion change and burst moving background.
In this study, we propose a novel framework to build a

backgroundmodel for object detection, which is brightness-
invariant and tolerate burst moving background, named as
co-occurrence probability-based pixel pairs (CP3). For
modeling background, pixel pairs with high co-occurrence
probability in time domain are represented by each other,
although the intensity of a single pixel may change dramat-
ically over time. This kind of pixel pairs are selected by
using spatio-temporal statistical analyses. Extending our
earlier work [9, 3], this paper employs co-occurrence his-
togram to describe the relationship between pixel pairs and
calculates correlation coefficient for measuring the degree

of co-occurrence which can deal well with a dynamic back-
ground; and introduces a spatial clustering operation to se-
lect optimal supporting pixels; then provides a more ac-
curate parameterized detection criterion instead of a fixed
double-sided threshold. In remainder, Section 2 details the
proposed background model; Section 3 details object de-
tection; Section 4 presents the experiments and Section 4
concludes the main contributions.

2. Background modeling
Fundamental definitions of image data: a training im-

age sequence with a total of T images, each image has
U×V pixel positions. Define P as target pixel at location
(u, v), and its intensity is denoted as {pt(u, v)}t=1,2,...,T ,
and Q(u′, v′) as arbitrary pixel with intensity sequence
{qt(u′, v′)}t=1,2,...,T at location (u′, v′). To analyze the bi-
variate statistical property of a pixel pair, the co-occurrence
probability joint histogram of a pixel pair is defined. The
i,jth bin of the joint histogram for an arbitrary pixel pair
(P, Q) in T training images can be expressed as

hPQ(i, j) =

T∑
t=1

δ(pt, qt, i, j), (1)

where δ(pt, qt, i, j) = 1 if (pt = i) ∩ (qt = j) (Kronecker
delta). The bins hPQ(i, j) corresponding to i, j ∈ [0, L−1]
represent the co-occurrence probability of pt = i and qt =
j. The joint histogram hPQ can be written compactly as
an ordered array, hPQ = {hPQ(i, j)}L−1

i,j=0. We selected
a target pixel P located on the “road”, and four pixels S,
W , G and R from “sky”, “wall”, “grass” and “road” re-
spectively, as arbitrary pixels Q shown in Fig. 1 (a). The
section hPQ(i, j) > 0 of co-occurrence probability joint
histograms are illustrated in Fig. 1 (b-e), hPS , hPW , hPG

and hPR reveal more and more regular distribution. In
Fig. 1 (e), the bins of hPR are parallel to the axis diago-
nal line. The corresponding intensity sequences of the four
histograms shown in Fig. 1 (f-i), the intensity changing in
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Figure 1. Co-occurrence joint histogram and intensity change

Fig. 1 (c, d) show unexpected phase difference between the
two time sequences, which disturb the stable distribution of
the joint histograms. In Fig. 1 (e, i), the statistical linearity
of the histogram indicates stable simultaneous change of pt
and qt. As a garyscale/single-channel image, the pixel’s in-
tensity changing follows the illumination increment, hence,
the statistical linearity of a pixel pair reduces to a stable
intensity difference Δ(pt, qt) just as Fig. 1 (e), in which
the slope of the regression line approaches to “1”. This
type of Q pixels can be employed to estimate the intensity
of the target pixel. For robust detection, it is necessary to
maintain sufficient number ofQ as supporting pixels, and
denoted as {QP

k }k=1,2,...,K . (P, {QP
k }) maintains a back-

ground model to provide a estimation for P . Once the true
intensity of P is far from the background model, P would
be regarded as an abnormal-status/foreground-element.

2.1. Measurement of co-occurrence pixel pairs

For a pixel pair (P, Q), the one dimensional histograms
corresponding to their marginal distributions are,

hP (i) =

L−1∑
j=0

hPQ(i, j) (2)

The expectations is E(pt) = 1
T

∑L−1
i=0 ihP (i); its variances

is σ2
pt

= 1
T

∑L−1
i=0 [i − E(pt)]2hP (i). The covariance of a

(P, Q) pair can be defined as follows:

CP,Q =
1

T

L−1∑
i=0

L−1∑
j=0

[i− E(pt)][j − E(qt)]hPQ(i, j). (3)

In order to measure the independent co-occurrence quanti-
tatively, we utilize Pearson correlation coefficient:

γ(P, Q) =
CP,Q

σpt
· σqt

, (4)

where σpt
and σqt are the standard deviations of P and Q

respectively. Fig. 2 shows examples of γ(P, Q), the black
crosses stand for the location ofP , and the red coloured area
have high correlation coefficient values. In order to accel-
erate computing, Eq. (4)) can be calculated based on a cor-
relation matrix instead of calculating pixel-by-pixel serial
processing. The correlation matrix is the covariance matrix
of the standardized random variables p̃t = pt/σ(pt). First,
with a total of M = U × V pixel positions, the image se-
quence can be arranged progressively as a column vector
set χM = {p̃t(m)}m=1,2,...,M . The correlation matrix in
the size ofM×M is

Υ (χM ) = C(χM , (χM )T ) (5)

where C(·) is the covariance operation. The correlation
matrix is symmetric so that each row and column of the
Υ (χM ) is an array of γ(P, Q) for each P (u, v). For speed-
up, we modified Eq. (5) using a hierarchical structure of a
covariance-matrix: χM can be sampled uniformly using a
integral sample interval Λ, the sub-set χ[M/Λ2] ⊂ χM :

Υ (χ[M/Λ2]) = C(χ[M/Λ2], (χ[M/Λ2])T ). (6)

In order to cover all the target pixels, we have Λ2 hierarchi-
cal correlation matrices Υ (χ[M/Λ2]),

χ
[M/Λ2]
λ = {p̃t(ωΛ2 + λ)}ω=1,2,...,[M/Λ2], (7)

where λ = 1, 2, ..., Λ2.
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For each target pixel P (u, v), U × V − 1 number of
γ(P, Q) need to be calculated at different locations (u′, v′).
ThenQn corresponding to the highestN components in the
array γ(P, Q(u′,v′)) can be selected as the candidates of pre-
ferred supporting pixels, namely

{Qn} = {Q(u′, v′)|γ(P, Q) > γ̌}, n = 1, 2, ..., N, (8)

where γ̌ is the lower limit for the co-occurrence pixel pair.
In practice, due to sensor noise and encoding noise, any pt

(a) (b)

(c) (d)

Figure 2. Diagram of γ(P, Q) using PETS2001-dataset3.

and qt cannot maintain a full co-occurrence relation. There-
fore, the lower limit γ̌ for choosing the high co-occurrence
pixel pairs is a key parameter. Our approach to formaliza-
tion is to assume that, pt = pt

′ + e1 and qt = qt
′ + e2,

where pt′ and qt′ are the intensities without any noise; e1
and e2 are the additive noise independently with each other
but with the same density function N (0, σ2

n). Then we as-
sume pt′ and qt′ are perfect positive linear correlation with
a constant b = Δ(pt

′, qt
′), namely pt′ = qt

′ + b, and anal-
yse γ̌ as a statistic for investigating how large degradation
is raised by the noise. For the computation of γ(P, Q), dis-
concordance between pt and qt can degrade γ̌ value apart
from “1”. The correlation coefficient γ̌ can be represented
by the next expression according to Eq. (4)

γ̌ =
C(pt′ + e1, pt

′ + e1 − e2 − b)

σpt
′+e1 · σpt

′+e1−e2−b

=
σ2
p′

t

+ σ2
n

σp′

t
+e1 · σp′

t
+e1−e2−b

(9)

When pt′ is independent with e, Eq. (9) is rewritten as

γ̌ =
σ2
p′

t

+ σ2
n

[(σ2
p′

t

+ σ2
n)(σ

2
p′

t

+ 2σ2
n)]

1
2

= (
σ2
p′

t

+ σ2
n

σ2
p′

t

+ 2σ2
n

)
1
2 = (1 +

σ2
n

σ2
pt

)−
1
2 , (10)

where σ2
n can be determined by the noise level of the im-

age sequence. When the noise level is significantly smaller
than the dynamic range of pt, namely σ2

pt
� σ2

n, Eq. (10)
approximate to “1”, which reveals that with large-scale in-
tensity variation in training dataset, the noise effect for cor-
relation measurement can be reduced. On the other hand,
if the intensity of P keep steady which means σ2

p′

t

→ 0,
Eq. (10) will level off to 1/

√
2. From the theoretical analy-

sis, the lower limit is determined according to the compre-
hensive conditions combining with σ2

n which can be easily
provided by users and a computable σ2

pt
. Fig. 3 demon-

strates that the rules to choose Qn based on the lower limit
γ̌ allow their spatial distributions of Qn (coloured area) to
follow irregular illumination variation patterns, resulting in
different numbers of Qn.

2.2. Background model of pixel pairs

(a) (b)

(c) (d)

Figure 3. Selecting QP
k using K-means in spatial domain. The

black markers is the P pixels in Fig. 2 (a-d). The coloured regions
stand for the clusterings. The blue circles are the centres of each
clustering, which are selected as QP

k . Here,K = 10.

As the spatial distribution of Qn follows irregular pat-
terns, we cannot implement any ordinary spatial interpo-
lation approach for selecting high representative QP

k from
Qn. To solve this issue, K-means clustering is employed to
partitionN number ofQn intoK clusters, depending on the
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nearest clustering centres. With clustering convergence, the
pixel that is closest to the k-th cluster centre is selected as a
uniqueQP

k . Six demonstrations of the QP
k optimization are

shown in Fig. 3. Note that, the computational complexity of
K-means does not grow linearly with the increasing of K ,
and the iteration can be convergencewithin several loops. It
is reasonable to assume that selecting more supporting pix-
els will contribute to a robust result. However, without loss
of generality, the number ofK for a given video scene is set
at 20 in the following experiment. For each QP

k , it keeps a
bivariate difference with P ,

pt∼N (qt(k) + b, σ2
ε ), (11)

where σ2
ε follows a normalized distribution ε ∼ N (0, σ2

ε).
We use this Gaussian function to model the distribution of
a pixel pair instead of a mixture of Gaussian [5] because
we found that a single Gaussian worked better since the se-
lected pixel pairs keeps steady difference except for noise,
the noise standard deviation is estimated as follows,

σ̂ε = σpt−qt(k)
, (12)

and the estimation of difference b is,

b̂ = E [pt − qt(k)]. (13)

The above two parameters σ̂ε, b̂ are recorded for the fol-
lowing detection procedure. The background model is a
look-up table consisting of {QP

k } ∼ [ u′, v′, σ̂ε, b̂ ].

2.3. Moving background case
A typical motion pattern in backgrounds is burst

motion. This motion pattern can be described as a moving
part of the background following regular directions but with
an irregularly scheduled occurrence; hence, the speed and
frequency can not be directly predicted. In the case of mov-
ing background, applying independent pixel-wise methods
(such as GMM [5] or Codebook [2]) only employ pixel’s
history to continuously update background, and the fixed
learning rate make these background models sensitive to
burst motion. However, the moving regions covering sev-
eral pixels in the same frames also present co-occurrence.
Our proposed method employ the spatial-dependence of
pixel pairs to keep stable differences regardless of the inten-
sity of a single pixel under any frequency and speed of burst
motion. Therefore, a target pixel P can search for the sup-
porting pixels QP

k if the intensity changes of the pixel pairs
are simultaneous. Fig. 4 shows a typical example of a target
pixel repeatedly passed by a moving automated door. The
supporting pixels with high co-occurrence are located along
its vertical direction meeting the simultaneity of burst mo-
tion shown in Fig. 4 (b-d), but not around a uniform neigh-
borhood. In contrast, Fig. 4 (e, f) show the case of a target
pixel in a static area of the same background.

(a) (b)

(c) (d)

(e) (f)

Figure 4. Examples using AIST-INDOOR dataset. (a) Location
of P (70, 180) and p′(170, 180). (b) γ(P, Q) of P (70, 180). (c)
Partial enlarged drawing of (b). (d) The supporting pixels of (c).
(e) γ(P, Q) of P ′(170, 180). (f) The supporting pixels of (e).

3. Object detection
The proposed background model converts the object

detection problem into a competitive binary classification
problem by comparing the pairs (P, {QP

k }k=1,2,...,K) in
turn. For each pixel pair (P, QP

k ), the binary function
β(QP

k ) for discriminating the normal/abnormal state be-
tween P and QP

k can be estimated as the following con-
dition according to Eq. (11):

β(QP
k ) =

{
1 if ||(p− qk)− b̂)|| < C · σ̂ε

0 otherwise
(14)

where p and qk are the intensity value of P and QP
k in the

current frame respectively, and C is a constant. Note that
Eq. (14) use a bivariate normal distribution of the pixel pair
is differ from traditional single Gaussian pdf -based identifi-
cation function; In a single Gaussian pdf -based method, an
ideal threshold should be changed following the latest inten-
sity variation. For example, the standard deviation should
be larger when the illumination fluctuate become more in-
tense. In our proposed version, the stable difference of a
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pixel pair provides a normalized observation so that σ̂ε is
only related to the noise acting on each pixel. Therefore, we
do not need an adjustable C to adapt to its changes caused
by illumination changes or background motion. After iden-
tifying the normal/abnormal state of the pixel pair,K bits of
β(QP

k ) are produced for the following decisions of each P .
To classify whether P is a foreground pixel, the probability
ξ(P ) of the background is defined as,

ξ(P ) =
1

K

K∑
k=1

β(QP
k ). (15)

Target pixel P in the input image is considered as a fore-
ground pixel only if both ξ(P ) < PF , wherePF is a global
threshold that can be adjusted to achieve the desired result.
Otherwise, pixel P is considered as a background pixel.

4. Experimental results
To evaluate the performance of the proposed method, we

tested it on video datasets including a variety of environ-
ments. The number of QP

k is K = 20 and σ2
n = 100 in

the training stage; two thresholds were set as C = 2.5 and
PF=0.5 respectively in the detection stage. We compared
our algorithm with three methods: (1) GMM [6], a stan-
dardized method among independent pixel-wise models;
(2) Sheikh’s KDE [4], a representative method among spa-
tially dependentmodels, which is different from the original
KDE that it employs KDE over the joint domain (location)
and range (intensity) representation of image pixels; (3)
GAP [9]. The parameters for GMM were set as defaults in
OpenCV tool; for Sheikh’s KDE were set according to the
author’s recommendations in Sheikh’s KDE with the size of
model [26, 26, 26, 21, 31]; and in GAP WG = 20,WP =
0.9,WH = 0.3. First, we use PETS2001-dataset3-camera1
to test outdoor severe illumination fluctuation (Fig. 6). The
sudden partial illumination variations in this scene can be
clearly represented as average intensity change shown in
Fig. 5 (d). In Fig. 5 (a-c), CP3 has an obviously higher
Recall and F -measure than other methods even under sud-
den illumination changes. During the frames from 150-200,
GAP and Sheikh’s KDE methods show clearly decreasing
performance of Recall, that because the test video comes
into a darker phase after the frame 150, and the dynamic
range of the intensity is compressed, as shown in Fig. 5 (d).
The second dataset for testing indoor environment is AIST
dataset. It contains several indoor extreme conditions: low
contrast illumination, lights sudden on-off and an auto-door
rapid open-shut. The average Precision, Recall and F -
measure are shown in Table 1. In, Fig. 7, compared with
other approach, CP3 is insensitive to varying illumination
and robust to reciprocating motion of the auto door. The
third dataset is “Wallflower”, which is introduced in the
work of Toyama et al. [7]. This dataset consists of seven

Table 1. Mean precision, recall, and F-measure for each method.
Methods Precision Recall F-measure
GMM 0.402 0.290 0.323

Sheikh’s KDE 0.374 0.517 0.306
GAP 0.912 0.575 0.703
CP3 0.922 0.780 0.845

video sequences, each of which addresses a special canon-
ical background subtraction problem shown in Fig. 8. Our
method masters the illumination changes and background
fluctuation well. Using speed-up background model, both
the memory cost and time consumption is O(TM2Λ−2)
that the hierarchical covariance-matrix reduces Λ2 compu-
tational complexity. On a computer with a Intel Xeon 3.0
GHz processor and 16 GB RAM, the optimized C++ imple-
mentation costs 15.73s for 50 training frames with a size of
1024×1024, and the detection implementation can process
about 40 fps, which is sufficiently fast for real-time detec-
tion.

Figure 6. Qualitative analysis in PETS2001.

5. Conclusions
In conclusion, CP3 performs robust detections under ex-

treme environments. It determines stable co-occurrence
pixel pairs instead of building the parameterized/non-
parametrized model for a single pixel. These pixel pairs are
adaptive to capture structural background motion and cope
with local and global illumination changes. As a spatial-
dependence method, CP3 does not predefine any local op-
erator, subspace or block, and it provides an accurate detec-
tion criterion even under weak illumination.
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Figure 5. (a) Precision, (b) Recall and (c) F -measure of CP3, GAP, Sheikh’s KDE and GMM of PETS2001 dataset3 camera1.

Figure 7. Qualitative analysis in AIST dataset.
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