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Abstract—Foreground segmentation in dynamic
scene is an important task in video surveillance. The
unsupervised background subtraction method based on
background statistics modeling has difficulties in up-
dating. On the other hand, the supervised foreground
segmentation method based on deep learning relies on
the large-scale of accurately annotated training data,
which limits its cross-scene performance. In this paper,
we propose a foreground segmentation method from
coarse to fine. First, a across-scenes trained Spatio-
Temporal Attention Model (STAM) is used to achieve
coarse segmentation, which does not require training
on specific scene. Then the coarse segmentation is
used as a reference to help Co-occurrence Pixel-Block
Model (CPB) complete the fine segmentation, and at
the same time help CPB to update its background
model. This method is more flexible than those deep-
learning-based methods which depends on the specific-
scene training, and realizes the accurate online dynamic
update of the background model. Experimental results
on WallFlower and LIMU validate our method outper-
forms STAM, CPB and other methods of participating
in comparison.

I. Introduction
1 Foreground segmentation plays an important role in

intelligent video monitoring [1]. Traditional foreground
segmentation methods usually rely on the background
statistical modeling which is an unsupervised training
process. Usually, the eigenvalues of each pixel are sampled
and counted in the time domain, to build the statistical
model. For example, Gaussian Mixture Model (GMM) [2] or
Kernel Density Estimation (KDE) [3]. Spatial-dependence
model [4], [5], [6], which exploit spatial-dependence among
pixels to build local or global models, is widely used
to explore context information but performs poor when
the background is texture-less. Background subtraction
methods proposed in recent years include [7], [8].
The main problem of these methods lie in updating

strategy which is using a learning rate function. However,
a manually set learning rate always has a well-known trade-
off problem. In order to adapt to the sudden change of

1Dong Liang and Xinyu Liu contributes equally to this work. This
work is supported by the National Key R&D Program of China under
Grant 2017YFB0802300.

illumination, the learning rate is usually high. As a result,
slowly moving objects or temporarily stopped objects will
be detected as background. BMOG [9] which based on Mix-
ture of Gaussians explores a novel classifcation mechanism
that combines color space discrimination capabilities with
hysteresis and a dynamic learning rate for background
model update. The learning rate will turn into a fixed
minimum value when a pixel turning from background to
foreground. In the opposite case, the learning rate will
increase. However, the strategy is unstable which means
any wrong detection may cause subsequent errors.

On the other hand, foreground segmentation methods
based on convolutional neural network have also emerged
in recent years [10], [11], [12], [13]. DeepBS [14] utilizes a
trained convolutional neural network and a spatial-median
filterer to implement foreground detection in various video
scenes. As the foreground is detected based on independent
frame, the temporal relevance of the neighbouring frames
is ignored. Cascade CNN [15] proposed a semi-automatic
method which release pressure on amount of training
data. CNN branches processing images in different size
are cascaded together that helps the cascade CNN to
detect foreground objects in multi-scale. FgSegNet [16],
[17] encodes the features of three different scales of the
same input image with three sets of CNN encoders. TCNN
(transposed convolutional neural network) is used to decode
the multi-scale features to obtain the pixel-level foreground
segmentation mask.

As is known to all, the training samples of segmentation
tasks need to be manually annotated, which is expensive.
It is the difficulty in implementing the rapid labelling and
training that limits its popularization and application in
video monitoring tasks. In order to improve the accuracy
of pixel level segmentation in the scene that has been
trained, these models are often over-fitting, resulting in
its poor generalization ability to the untrained scene.
Some methods [14], [18], gained capability of foreground
segmentation under cross-scene, after training with the
large-scale multi-scene data. At present, the performance
of foreground segmentation based on convolutional neural
network in untrained scenes is generally worse than that
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Fig. 1. The proposed method

of traditional background modeling methods.
In recent years, we proposed the Co-occurrence Pixel-

Block Model (CPB) [19], [20]. Its early work included [21],
[22]. This method uses the spatial correlation between
pixels to segment the foreground, so that the background
model can automatically adapt to the dynamic background.
However, the training process of this method relies on the
calculation of linear correlation between pixels under the
condition of large amount of data, which makes it difficult
to update online. The segmentation performance of this
method will gradually decrease over time. And it makes this
method more suitable for offline applications. Recently, we
proposed a Spatio-Temporal Attention Model (STAM) [18]
for foreground segmentation cross-scene. It combines spatio-
temporal information and uses the attention module to
fuse the features of the encoder and decoder. It also takes
the single frame as well as its optical flow information as
input which guarantees its sensitivity to moving targets.
However, the cross-scene segmentation STAM obtains is
usually coarse, indicating that the result needs further
refinement.
In this paper, we propose a foreground segmentation

method from coarse to fine. First, a trained STAM is used
to achieve a coarse segmentation across scenes. Then the
coarse segmentation result is used as a reference to help
CPB complete the fine segmentation. At the same time the
proposed method also helps CPB to have its background
model updated online. On WallFlower [23] and LIMU [24]
dataset that are not training by STAM, the performance
of the proposed method is better than that of the single
STAM model and CPB model, as well as a lot of other
methods participating in comparison.

II. Description of the proposed method
The proposed method framework is shown in Figure 1.

First, STAM is used to get the coarse segmentation result.
Then, Through three steps which are selection of the
supporting blocks, replacement of supporting blocks and
calculation of foreground similarity, the coarse result is
used to help CPB complete the fine segmentation.

A. Spatio-Temporal Attention Model (STAM)
STAM [18] can be seen as an attention-guided weight-

able connection encoder-decoder, to preserve the effec-
tive connections and suppress the invalid connection. It

Fig. 2. Spatio-Temporal Attention Model (STAM)

integrates the features of the decoder and encoder by
introducing the attention module in the decoding stage.
The high-level features provide global information to
guide the attention module to select appropriate low-level
features. These low-level features are helpful for binary
prediction of the input frame. As shown in Figure 2, the
model combines spatial and temporal information, and
the attention module is employed to mix encoder features
together with decoder ones. The blocks in green represent
the encoder layers and “IConv” and “OConv” are two
encoders fed with static image and optical flow, respectively.
They have the same structure and eight convolution layers.
Additionally, the decoder has eight layers and up-sampling
processed in each layer and seven attention modules are
applied to make features mixtures. The blocks in pink and
orange represent the decoder layers and attention modules.
The plus sign in green means the addition in pixel-level.
The static frame and its optical flow (motion cue) feed
two encoders, and reorganized by attention modules to
reconstruct the foreground in pixel-level. Compared to the
model without motion cue, this model introduce useful
temporal informations.

The feature fusion method we adopted in the attention
mechanism in [18] is shown in the left part of Figure 3,
which is marked as the A mode. The attention module
merges high-level and low-level features under the guidance
of the former ones. Y 1 and Y 2 are the encoder features of
the input frame and optical flow, respectively, and X is the
decoder feature. H, W and C are the height, width and
channel number of the feature map, respectively. It applies
a single convolution operation conv() onto X followed by
a sigmoid activation function σ that makes the weights
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Fig. 3. Comparison of two different feature fusion methods

belong to 0 to 1. Where b is the bias value of a convolution
operator. Then it uses fweights to weight the sum of the
encoder features. Finally, the decoder feature X and the
re-weighted features are concatenated foutput as the input
of next convolutional layer.

fweights = σ(conv(X) + b) (1)

foutput = concat(fweights ⊗ (Y 1⊕ Y 2), X) (2)

where ⊗ and ⊕ denote the pixel-wise multiplication and
sum operation, and concat(, ) is a concatenate process on
two features.
The fusion method shown in the right part of Figure 3

is marked as the B mode. The difference of the two
modes is that different methods are used to process the
appearance and motion features in the same layer. A mode
merges two input features by adding corresponding pixels
while in B mode, we first connect these two features by
channel, the corresponding channel number is doubled,
and then use the 1× 1 convolution to process the result to
reduce the dimensions of the channel. Feichtenhofer [25]
pointed out that because each channel in the network
expresses different semantic information and the semantic
information of each channel is arbitrary. The fusion method
of directly adding corresponding channels and pixels cannot
guarantee that the semantic information expressed by the
two features involved in the operation is consistent. While
B first connects the two channels without considering the
correlation between the different channels. And then uses
the subsequent layer to learn the correlation information
between the different channels. Experiments prove that B
mode is a better choice, which can improve the model’s
F-measure and increase Recall.

STAM uses randomly 5% training data with groundtruth
on the CDNet2014 dataset [26], and we can get foreground
segmentation result on other datasets without retraining it
on specific scene. Figure 4 shows the segmentation results
of STAM on the MSR 3D Video dataset [27], which is used
in the field of view synthesis [28], [29]. In the scene on the
left, the background has flickering lights and the horizontal
movement of the entire screen. The scene on the right has
another human body and shadows which are unfavourable
for foreground segmentation.

Fig. 4. Segmentation results of STAM on the MSR 3D Video dataset

With a trained STAM model, we can get foreground
segmentation results on many other datasets directly. There
is no need to retrain it on specific scene because pixel-
level labeling takes time and effort. However, the cross-
scene segmentation results STAM gives are usually coarse,
indicating that the results need further refinement.

B. Co-occurrence Pixel-Block Model (CPB)
The CPB model includes two stages: training process

and detection process.This method compares the target
pixel p with its supporting block QB to determine whether
p belongs to foreground.
The co-occurrence supporting blocks of target pixel p

is defined as {QB
M}m=1,2,...,M = {QB

1 , Q
B
2 , ..., Q

B
M}. Those

supporting blocks are selected by using Pearson product-
moment correlation coefficient.

{QB
M}m=1,2,...,M = {QB |M largest γ(p,QB)}. (3)

γ(p,QB
m) =

C
p,Q

B

m

σp · σQ
B

m

. (4)

C
p,Q

B

m

is the intensity covariance of the target pixel p and
its supporting block QB

m. σp and σ
Q

B

m

are the standard
deviations of the intensity values of p and QB

m, respectively.
Each target pixel p corresponds to several supporting blocks
QB. They maintain a stable relationship over time, that
is, the difference in intensity follows a single Gaussian
distribution:

(Ip − IQB
m

) ∼ N(bm, σ
2
m). (5)

Ip is the intensity value of target pixel p and IQB
m

is the
average intensity value of supporting block QB

m.
After the training process, the CPB model obtains all

the supporting blocks {QB
M}m=1,2,...,M of each target pixel

p. The state of each pixel-block pair (p,QB
m) is defined as

follows:

ωm =
{

1 if |Ip − IQB
m
| ≤ η · σm

0 otherwise
(6)

η is a threshold of Gaussian model. Considering the
difference in correlation between each target pixel and
its supporting blocks, their correlation coefficients γm are
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Fig. 5. Selection of supporting blocks

Fig. 6. The same target pixel (the red one in the figure) has different
supporting blocks (the green ones in the figure) at different time.
When a ship passes by, the model will always select the supporting
blocks in the background area.

introduced as weights. CPB will classify the target pixel p
as foreground when the following conditions are met:

M∑
m=1

γm · ωm > λ ·
M∑

m=1
γm (7)

λ is relevance decision threshold.
The CPB model relies on the strong correlation between

target pixel p and its supporting blocks {QB
m}m=1,2,...M ,

which cannot be updated after training process. It’s
the lack of update capability which would cause model
performance to degrade over time and limits the
widespread use of the model.

Fig. 7. Replacement of supporting blocks when classifications differ

C. Selection of the supporting blocks
When the foreground object covers the supporting block,

it will obviously cause the Gaussian relationship between
the supporting block and its target pixel to be destroyed.
The state of pixel-block pair which is defined by Equation 6
is temporarily invalid, resulting in segmentation errors.
The segmentation result given by the STAM model has
a high probability as foreground. The performance of the
CPB model will be effectively improved by avoiding the
selection of supporting blocks in the foreground area. It
can be seen in Figure 5 that only the supporting blocks
in the background area will be used, while the blocks in
foreground marked by gray will be temporarily discarded.
The candidate supporting blocks marked by light yellow are
obtained during training process. It turns out the proposed
method works very well especially when there is a large
foreground area which means a large number of pixel-block
pairs are in a structure of failure. Figure 6 shows the
selection process of supporting blocks when a boat passing
by.

D. Replacement of supporting blocks when classifications
differ

From above, we try not to choose supporting blocks that
are in the foreground area. However, first, there is a certain
gap between the STAM’s segmentation result and the
groundtruth, so it is possible that some of the supporting
blocks are still in foreground area. Secondly, the pixel-block
model which is obtained during the training process may
generate a degredation over time, because the background
is not static, such as cloud drift in the sky or entry/exit
of vehicles in the parking lot. As a result, foreground or
background “noise” might arise in the detection process.

Those pixels that CPB and STAM model’s classifications
differ, as shown in Figure 7, the green and orange areas.
They are specifically divided into: Case 1) CPB considers it
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as foreground while STAM classifies it as background; Case
2) CPB considers it as backfround while STAM classifies
it as foreground.

Consider the difference of the linear correlation coefficient
γm between each supporting block QB

m and the target pixel
p. CPB uses the correlation coefficient γm as the weight
value. When the result is different from that of the STAM’s,
the supporting blocks corresponding to the high correlation
coefficient value need to be responsible for potential errors,
which may already be in the state of structural failure. The
strategy is as follows:

K =
M∑

m=1
ωm (8)

γ =
{

1
K

∑M
m=1 γm · ωm case 1

1
M−K

∑M
m=1 γm · (1− ωm) case 2

(9)

If the correlation coefficient between the supporting block
QB

mand target pixel p satisfies:

γm ≥ γ (10)

Then QB
m needs to be replaced.

As shown in Figure 7, when considering those target
pixels that have different classifications, their supporting
blocks which are selected by Equation 10 will be tem-
porarily discarded, and the candidate supporting blocks
represented by the light yellow will replace them as the
new supporting blocks of the target pixel.
When STAM and CPB have different segmentation

results at the target pixel p, we take STAM’s results
as a guide. Considering the possibility of errors in the
segmentation results of CPB, we decide to replace the
supporting blocks that may already be in a structural
failure state with candidate blocks. At the same time,
the robustness of CPB also means that this solution will
not cause the degradation of segmentation performance.
The coming relevant comparative experimental results also
confirm the rationality of the proposed solution.

E. Calculation of foreground similarity
The construction of the pixel-block model is based on

the correlation of their eigenvalues in the long-term domain.
The supporting block with a high correlation coefficient
should be an area that is homogeneous with its target pixel.
When the pixel p is the foreground and it is misclassified
by CPB as the background (which is, case 2), calculate the
similarity (the Euclidean distance in image space) between
the pixel and the surrounding foreground pixels rF , and
calculate the average similarity between the pixel and all
its supporting blocks rB . If it meets the following equation,
p will be classified as foreground.

rF > ε · rB (11)

ε is similarity decision threshold.

III. Experiments
A. Settings
The CDNet2014 dataset contains a large number of

different scenes. The STAM model is trained on the
CDNet2014 dataset by taking random 5% data and its
groundtruth. In order to verify the generalization ability of
the proposed method under cross-scene, we use WallFlower
and LIMU datasets. In other words, we train STAM on
CDNet2014 and do foreground segmentation on WallFlower
and LIMU. In the comparison experiment, Cascade CNN
and FgSegNet are supervised learning methods and they
take the same strategy as STAM.
For the CPB model we use the following strategy. On

WallFlower dataset, we adopt the strategy provided by the
dataset itself, that is, using the provided 200 frames as
training set. On LIMU dataset, we choose the first 400
frames for training. The experimental parameter settings
are shown in Table I.

B. Results and evaluation
Comparative experiments were performed on a total

of 10 scenes of WallFlower and LIMU. The experimental
setting allows us to verify the cross-scene performance of
the proposed method against other methods.

The experimental results on the WallFlower dataset are
shown in Table II, III and Figure 8. Taking F-measure as
the evaluation, the method proposed in this paper achieves
the highest score on Bootstrap, ForegroundAperture,
LightSwitch, TimeOfDay, and performs better than CPB
on all scenes. It also performs best on average across
all scenes. An average increase of 0.1215 over CPB and
0.1109 over STAM. MovedObject is a scene which is used
to test the update ability of the background model. There
is no foreground target in the groundtruth. So Specificity
= TN / (TN + FP) is selected as the evaluation. From
Table III, it can be seen that the method proposed in
this paper ranks first among all methods. As shown in
the fifth line of Figure 8, the armchair in the scene has
been moved which causes CPB detect it as foreground.
In contrast, the proposed method performs well in this
situation. WavingTrees is a scene that branches sway
back and forth. GMM is very effective in modeling the
multimodal distribution background, especially this kind
of scene with tiny repetitive motion.

For the LIMU dataset, comparative experiments

TABLE I
PARAMETER SETTINGS

Parameter Value

number of supporting blocks K 20
number of candidate supporting blocks 10

Gaussian model threshold η 2.5
Relevance decision threshold λ 0.5
Similarity decision threshold ε 0.8
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TABLE II
F-MEASURE OF DIFFERENT METHODS ON WALLFLOWER

Method Bootstrap Camouflage ForegroundAperture LightSwitch TimeOfDay WavingTrees Overall

The proposed 0.7560 0.6884 0.9402 0.9097 0.7949 0.6665 0.7929
STAM[18] 0.7414 0.7369 0.8292 0.9090 0.3429 0.5325 0.6820
DeepBS[14] 0.7479 0.9857 0.6583 0.6114 0.5494 0.9546 0.7512

Cascade CNN[15] 0.5238 0.6778 0.7935 0.5883 0.3771 0.2874 0.5413
FgSegNet[16] 0.3587 0.1210 0.4119 0.6815 0.4222 0.3456 0.3902

CPB[19] 0.6518 0.6112 0.5900 0.7157 0.7564 0.7033 0.6714
SuBSENSE[6] 0.4192 0.9535 0.6635 0.3201 0.7107 0.9597 0.6711

GMM[2] 0.5306 0.8307 0.5778 0.2296 0.7203 0.9767 0.6443
PBAS[30] 0.2857 0.8922 0.6459 0.2212 0.4875 0.8421 0.5624

TABLE III
SPECIFITY OF DIFFERENT METHODS ON MOVEDOBJECT

The proposed STAM[18] Cascade CNN[15] FgSegNet[16] CPB[19]
0.9977 0.9949 0.7763 0.8470 0.8922

Fig. 8. The comparison of different methods on WallFlower

were performed on CameraParameter, Intersection,
and LightSwitch. The experimental results are shown
in Table IV and Figure 9. Taking F-measure as the
evaluation, The proposed method ranks first on all three
scenes. The average F-measure is 0.3154 higher than
STAM and 0.1137 higher than CPB. From Figure 9 we
can also see that the proposed method well suppresses
false positive which is marked with orange.

IV. Conclusion

Based on CPB model, we use the STAM segmentation
result as a guide to complete a coarse-to-fine foreground
segmentation and help CPB to have its background model
updated. Experiments show that the proposed method has
a higher performance than CPB on all the experimental
datasets. In a total of 10 scenes of WallFlower and
LIMU datasets that have not been trained by STAM,
the proposed method ranks first on 8 datasets except
Camouflage and WavingTrees. In summary, the proposed
method is significantly better than STAM and CPB in cross-
scene, and is superior to other methods that participate
in comparison. Future work will be to further explore the
replaceability of the STAM module in the proposed method
and the corresponding comparison after applying different
methods as segmentation references.
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