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Abstract— Contactless palmprint recognition, an emerging bio-
metric technology, has attracted increasing attention due to its
noninvasive and high practicability characteristics. Although it is
naturally suitable for mobile application scenarios, the following
two challenges severely limit its recognition performance: 1)
the inconsistency in acquisition devices used in training and
testing, and 2) many subjects are unable to be imaged on each
device, resulting in incomplete data problems. To address these
issues, we propose a self-paced CycleGAN with self-attention
modules, which simultaneously synthesizes missing data and
alleviates the influence of different imaging devices. Specifically,
we develop CycleGAN with self-attention modules to generate
missing training data by effectively mining the structural corre-
lation among samples while capturing the cross-domain features.
Furthermore, a self-paced learning strategy, which is a human
cognitive-driven learning mechanism, is used to guide learning
the robust cross-domain feature representation and recognition
model, by which the relatively easy learning samples are gradu-
ally involved in the training process. To verify the effectiveness
of the proposed method, we conduct experiments on contactless
palmprint datasets collected using different smartphones. The
results show that our approach outperforms state-of-the-art
methods in classifying contactless palmprint images.

Index Terms— Biometric, contactless palmprint, cross-domain
recognition, image-to-image translation, self-paced learning, self-
attention.
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I. INTRODUCTION

COMPARED with traditional palmprint recognition tech-
nology, contactless palmprint recognition has better user

acceptance and ease of use [1] because of fewer hand position
restrictions and more flexible image acquisition scenarios.
Based on the above inherent advantages, contactless palm-
print recognition technology has wide application prospects
in identity authentication [2], [3].

In practice, contactless palmprint recognition easily suffers
from noise and varies in illumination translations, scales,
and rotations. Most of the previous palmprint recognition
approaches [4], [5], [6] were originally derived for contact
palmprint images and cannot achieve satisfactory performance
on contactless palmprint recognition tasks [7]. Recently,
some contactless palmprint feature extraction and recognition
algorithms have been proposed. An iterative RANSAC (I-
RANSAC) algorithm was introduced in [8] to refine matched
scale-invariant feature transform (SIFT) points. Xu et al. [9]
applied a spatial transformation network to align images and
exploited the residual network for classification problems.
Ajay Kumar et al. [10] developed a deformation alignment
and matching approach to achieve feature alignment of the
local regions to alleviate the effect of deformations on classi-
fication performance. A subspace method [11] was developed
to simultaneously capture the similarity and the low-rank
structural data relationships. In [12], a fusion model with a
quaternion matrix was proposed for multi-domain palmprint
image feature extraction.

Notably, most of the existing contactless palmprint recog-
nition methods are based on the assumption that training and
test data are collected from the same imaging device, which
implies that the samples have the same data domain. How-
ever, the above condition is difficult to guarantee in practical
contactless palmprint applications. Often, the palmprint acqui-
sition equipment used for testing is different from the training
data acquisition equipment. When using the smartphone as
the imaging acquisition device for palmprint recognition appli-
cations, the users can collect palmprint images conveniently
without the need for equipping the explicitly designed imag-
ing devices, thereby expanding the application scenarios of
palmprint recognition. For example, in many distributed sys-
tems, palmprint authentications can be performed on remote
authentication servers, which requires collecting palmprint
images from different devices, such as smartphones. In mobile
payment applications, the user can upload palmprint images
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captured by his or her smartphone to remote servers for enrol-
ment. When checking out, the salesperson can ask the user to
show his or her palm for payment. The salesperson captures
the palmprint image with the smartphone and uploads the
palmprint images to the remote server for authentication. Many
people change their smartphones after using them for a period,
so they need to use palmprint images collected by different
devices for authentication. With the development of contact-
less palmprint recognition, cross-device palmprint recognition
application scenarios will be increasingly common. Therefore,
data heterogeneity and distribution differences are challenging
for contactless palmprint recognition across smartphones.

The incomplete data problem is widespread in contactless
palmprint applications across devices such as smartphones.
There are many kinds of imaging devices in real-world
applications, especially for distributed identity authentication
systems, which makes it difficult to guarantee that the palm-
print images of all users will be collected from each device.
Therefore, during both the training and testing phases, it is a
usual situation that palmprint images of some users may be
collected by partial devices, while the images of these users
from other devices are missing, as shown in Fig.1(a), which
leads to poor recognition results. Moreover, the impact of noise
and pose variations in contactless palmprint images also lead
challenging problem in both data complement and recognition.

In this paper, to solve the incomplete multi-domain con-
tactless palmprint recognition problem, we propose a cycled
self-paced generative adversarial network (SPCGAN), which
is a cognitive-driven multi-view data synthesis and fusion
method with a self-attention mechanism [13]. First, a double-
channel generative adversarial network is employed to fuse
the user identity information from one data domain and
the image pattern from other data domains by two inverse
generators and cycle-consistency loss. Fake missing images
can be generated using this model, where the data distribution
of generated images is similar to the missing data while
the identity information remains the same. Second, since
traditional convolutional generative adversarial networks are
limited by the size of convolution kernels, we introduce self-
attention modules to model long-range dependencies, which
can facilitate maintaining the internal correlations with a small
computational cost. Finally, we introduce a self-paced learning
(SPL) strategy, which is an easy-to-hard human learning
mechanism, by ordering the training images in a meaningful
way. This strategy can alleviate the impacts of noise and pose
variations in contactless palmprint recognition and improve
the stability of the generative adversarial module. We define
significant quality scores to dynamically measure the learning
ease of training samples, by which relatively easy-simple
learning images are gradually involved in training progress
to learn the robust recognition model.

The contributions of this article can be summarized as
follows:

1) To our knowledge, this is the first work to investigate
incomplete contactless palmprint recognition across data
acquisition equipment.

2) We propose a self-paced CycleGAN, which is
called SPCGAN, to simultaneously synthesize missing

cross-device contactless palmprint images and fuse these
data by mining the complementary information among
data domains.

3) To alleviate the influence of noise and deformation from
contactless palmprint images and improve the stability
of the generative adversarial module, we introduce the
SPL-based cognitive-driven mechanism to the model
to guide the gradual involvement of relatively reliable
training samples in the training process.

4) The experimental results on two contactless palmprint
databases imaged by different smartphones show that
the proposed method outperforms several state-of-the-
art methods.

The remainder of this paper is structured as follows.
Section II presents a detailed review of the related rele-
vant techniques for palmprint recognition and image-to-image
translation. Section III introduces the proposed self-paced
CycleGAN method. Section IV describes the experimental
results. Finally, Section V concludes the work.

II. RELATED WORK

A. Palmprint Recognition

In recent years, feature learning-based approaches have been
the most widely used in palmprint recognition [7]. Convo-
lutional neural networks (CNNs), including AlexNet [14],
VGG-16 [15], ResNet-50 [16], and Inception-V3 [17], are
applied for feature extraction and classification because of
their great success in large-scale image recognition. Moreover,
feature learning-based methods are also applied for contactless
palmprint recognition. In [18], AlexNet with an eight-layer
architecture was introduced for contactless palmprint feature
extraction. Similarly, a fine-tuned pretrained AlexNet [19]
achieved promising verification accuracy on contactless palm-
print images of newborn babies. In addition, CNNs are used
as fusion approaches in multi-modal fusion with contactless
palmprints and other biometric traits. For example, PCANet,
a CNN trained using an unsupervised procedure based on
principal component analysis (PCA), was used for fusing
palmprint and inner finger texture in [20]. In [21], a transfer
autoencoder was developed for cross-domain palmprint recog-
nition. Features with the same distribution were extracted after
alternating autoencoder and discriminator training. Shao et al.
proposed a two-stage alignment, called joint pixel and feature
alignment [22], to reduce the dataset gaps at the pixel level
and align the distributions at the feature level.

However, most existing cross-domain contactless palmprint
recognition approaches are trained on complete multi-domain
data. It cannot be guaranted in the real application of contact-
less palmprint applications with multiple acquisition devices,
which leads to poor classification accuracy and an inability to
predict samples with missing data in some domains.

B. Image-to-Image Translation

Image-to-image translation learns the mappings among
images in different domains and can be used to recover the
missing samples by cross-domain feature representation. Gen-
erative adversarial networks (GANs) have achieved remarkable
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Fig. 1. An example of the missing data problem in real contactless palmprint recognition across smartphones. (a) Traditional methods: in the training
process, the palmprint images of some subjects may be missing in partial domains, while existing in other domains which leads to false recognition results
of those subjects that are not involved in the training process. (b) SPCGAN: our method simultaneously synthesizes missing data and alleviates the influence
of different imaging devices, by which the missing subjects are expected to be correctly classified.

performance in image translation tasks [23], [24], [25] due
to their great feature representation learning capacity. GANs
mainly contain two modules, a generator and a discriminator.
The generator learns to generate fake data, and the discrimina-
tor attempts to distinguish between real and fake data. In [26],
a general-purpose model called pix2pix was proposed for
supervised image-to-image translation tasks. A U-Net-based
architecture is applied as the generator in pix2pix, and the
discriminator is designed as PatchGAN. Although pix2pix has
demonstrated excellent performance, such as [27], [28], and
[29], it requires well-aligned paired training images, which
are not available in many contactless palmprint recognition
applications. Zhu et al. proposed CycleGAN [30] for image
translation without paired training samples. In CycleGAN,
the generator is designed as a cycle architecture for unpaired
data and cycle-consistency loss is introduced to keep the
key information between the input and output of the cycle
architecture. In [30], Zhu et al. found that the CycleGAN
model is robust with colour and texture changes but sensitive
to geometric changes in the image-to-image translation task.

C. Self-Paced Learning

SPL was proposed to simulate the human learning pro-
cess [31]. It progressively arranges learning tasks and gradu-
ally obtains a robust learning model. Recently, SPL has shown
efficient results on many learning tasks, in which training
samples are gradually involved from easy to hard according
to the learning task. By defining a computable measure for
learning hardness of samples, SPL can avoid falling into local
minima and improve the generalization of the learning model.
The SPL strategy is adopted with a regularization term in the
objective function to evaluate the hardness of training samples.
Jiang et al. [32] considered diversity and proposed a more
generalized approach called self-paced learning with diversity
(SPLD). The SPLD regularization term is independent of the
objective function. In [33], a multi-objective SPL method was
introduced, which treats the SPL problem as a multi-objective

issue. Many researchers have adopted SPL in their tasks, such
as multi-modal few-shot learning [34], long-term tracking [35],
and co-saliency detection [36]. In this paper, we exploit SPL
to reduce the learning difficulties of image-to-image transla-
tion tasks on incomplete multi-domain contactless palmprint
images.

III. PROPOSED METHOD

A. Architecture of Proposed SPCGAN

To synthesize the missing samples in the target domain from
the source domain, we transform the image data distribution
in the source domain to be similar to the target domain by
CycleGAN armed with self-attention modules [13].

Given domains A and B and training samples {ai }
MA
i=1 ∈

A and {b j }
MB
j=1 ∈ B, where MA and MB are the sample

numbers in domains A and B, respectively. There are two
mapping functions G : A → B and F : B → A in
this model. In addition, there are two associated adversarial
discriminators, DA and DB . DA encourages F to translate B
into outputs indistinguishable from A. In the same way, DB
aims to distinguish between {b} and {G(a)}. The generator
and discriminator architectures are shown in Fig. 2. Con-
sidering that geometrical characteristics are one of the most
significant contactless palmprint image features [7], a con-
volutional generator may not achieve significant performance
for the multi-domain contactless palmprint image translation
task, because long-range dependencies cannot be captured
only by several convolution operators [37]. To address this
issue, we introduce self-attention modules as a complement
to convolution operators to model long-range dependencies
efficiently, as shown in Fig. 3. Convolution feature maps
x ∈ R(C×N ), where C is the number of channels and N is the
number of features, are transformed into three feature spaces
q, k, v, where q(x) = Wq x, k(x) = Wk x, v(x) = Wvx . The
attention map Attn and the output of the self-attention layers
O can be calculated as:

Attn = so f tmax(qkT), (1)
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Fig. 2. Architecture of the proposed model for contactless palmprint image recognition across domains.

Fig. 3. The framework of self-attention model, where ⊗ denotes matrix
multiplication.

O = f (Attnv), f (x) = W f x, (2)

where W f is the learned weight matrix. In addition, a learning
rate γ is introduced to modify the self-attention layer weight.
The learnable scalar γ is initialized as 0 and learns to assign
a larger weight gradually. Therefore, the final output of the
self-attention module is given by

y = γ O + x . (3)

We fuse two self-attention modules in the generator before
and after the residual part, as shown in Fig. 2.

The typical overall loss function of CycleGAN is:

L(G, F, DA, DB) = LG AN (G, DB, A, B)

+ LG AN (F, DA, B, A)

+ λLcyc(G, F), (4)

where LG AN and Lcyc represent adversarial loss and cycle-
consistency loss, respectively. λ controls the relative impor-
tance of cycle-consistency loss. In particular, we introduce
identity loss to ensure identity invariance:

Lidt (G, F) = Ea∼pdata(A)[∥ G(a) − a ∥1]

+ Eb∼pdata(B)[∥ F(b) − b ∥1]. (5)

Finally, the optimizing objective can be obtained by:

LS PCG AN (G, F, DA, DB) = LG AN (G, DB, A, B)

+ LG AN (F, DA, B, A)

+ λLcyc(G, F)

+ µLidt (G, F), (6)

where µ controls the relative importance of identity loss.

B. Self-Paced Learning Strategy

Compared with contact-based palmprint images, in practice,
contactless palmprint images have more deformation and
noise. In addition, despite GAN’s excellent success, it still
has obstacles to stable training due to the Nash equilibrium,
vanishing gradient, and mode collapse. To alleviate the influ-
ence of the above aspects, we introduce SPL into the proposed
model. The core of SPL is to iteratively sort training samples
via human learning [31]. Motivated by [38], we developed
an SPL strategy based on the quality score to induce the
samples to participate in the training process. In our method,
the quality score is defined to quantify the learning difficulties
of generated contactless palmprint images. This measure is
composed of two parts: the consistency score and the identity
score. The consistency score is defined to judge the gap
between the input images and the output images after two
transformations (A − B − A), and the identity score measures
the identity invariance. For domain B, the score is as follows:

Scoreb = Eb∼pdata(B)[∥ F(G(b)) − b ∥1]

+ Eb∼pdata(B)[∥ F(b) − b ∥1]. (7)

A similar quality score is defined in the reverse direction
for domain A. We conducted several experiments to verify the
effectiveness of adversarial loss, consistency loss, and identity
loss in quality scores in Section IV.

We developed a self-paced training scheme based on quality
scores, as shown in Fig. 4, by which reliable images are
gradually involved in training progress. Assume that dataset
Xall = X train ∪ Xrest , X train ∩ Xrest = ∅, where Xall denotes
all training data, X train denotes data involved in training and
Xrest denotes the remaining training data. In the first iteration,
Xall is randomly divided into two parts: X1

train and X1
rest ,
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Fig. 4. The proposed cross-domain fusion model with the SPL strategy framework. A quality score is proposed to measure sample learning ease. Contactless
palmprint images are divided into a training group and a rest group. In the first iteration, the training samples X1

train are selected randomly. When the loss
function converges, the quality scores of the remaining samples X1

rest are calculated by the trained model. Then, the top k easy learning samples are iteratively
selected into the training group to learn a more robust model. In the last iteration, all of the training data are involved in the training process.

where the proportion of X1
train in Xall is rini . In each iteration,

there are two steps: a training step and a ranking step. In the
training step, SPCGAN is trained with X train until the loss
function converges. Then, in the ranking step, the trained
model is used to calculate the quality scores of Xrest . The
samples in Xrest are ranked from easy to hard according to
the quality scores. The top k samples are selected as training
data for the next iteration. k specifies a series of maximum
numbers of the selected samples in Xrest for the next iteration
and is designed to be related to the sample number mrest of
Xrest , where k = rkmrest . In the nth iteration, which is the last
iteration, all of the training data are involved in the training
process. The pseudocode of the proposed method is given in
Algorithm 1.

IV. EXPERIMENTS

A. Databases of Contactless Palmprint Across Smartphones

To evaluate the recognition accuracy of the proposed
method, we considered two contactless palmprint databases
imaged by smartphones. Because of palmprint pose variation
and the complicated backgrounds and illumination conditions
in uncontrolled environments, extracting regions of interest
(ROIs) from contactless palmprint images is challenging.
ROI extraction and classification are both important topics
in contactless palmprint recognition. This work focuses on
cross-device classification issues, while [3] and [39] proposed
ROI extraction approaches for contactless palmprints.

Mobile Palmprint Database (MPD) [3] has 16,000 palm-
print images from 200 subjects. Two smartphones with differ-

Algorithm 1 Self-Paced Learning Strategy.
CALSCORE( ) Returns the Quality Scores.
RANK( ) Is a Function That Ranks the Images Based on
Quality Scores.
TOP( ) Returns the Lowest-Ranked Images.
Require: training set Xall
Ensure: mapping functions G, F

1: Randomly divide training set Xall into X train and Xrest ,
where Xall = X train ∪ Xrest , X train ∩ Xrest = ∅, and the
proportion of X train is rini .

2: For i = 1,2. . . n-1 do
3: While not converged do
4: Update G, F, DA, DB with X train
5: Update k : k = rkmrest
6: Score = CALSCORE(Xrest , G, F)
7: Xsorted = RANK (Xrest , Score)
8: X topk = TOP(Xsorted , k)
9: Update X train : X train = X train ∪ X topk

10: Update Xrest : Xrest = Xrest − X topk
11: While not converged do
12: Update G, F, DA, DB with X train

ent cameras, Huawei and Xiaomi, were used to collect palm
images. Each volunteer was asked to provide 10 images of
each hand with each camera. In addition, there were two
collection rounds in two sessions, which avoided the time
influence. A local coordinate system with “double-finger-gap”
and “palm-center” in the training contactless palmprint image
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Fig. 5. Typical palmprint ROI images. (a) and (b) are ROI images of the same
sample collected by Xiaomi and Huawei, respectively, in the MPD database.
(c) and (d) are selected from Huawei and iPhone images, respectively, in the
XJTU-UP database, which belong to the same sample.

was established according to the finger-gap points and was
used to obtain the ground truth for each training image.
Then, the Tiny-YOLOV3 detector was trained to obtain the
key points in test contactless palmprints, which helped to
construct the local coordinate system for extracting the ROI.
More details about ROI extraction on the MPD database can
be found in [3]. All of the images were cropped as ROIs
with a size of 1896 × 1896 pixels. In this paper, the images
were divided into two datasets according to the acquisition
smartphones, denoted as HW (Huawei) and XM (Xiaomi).
There were 8,000 images belonging to 400 categories in each
dataset.

Xi’an Jiaotong University Unconstrained Palmprint
Database (XJTU-UP) [39] is an unconstrained palmprint
database collected by smartphones, i.e., iPhone 6S, Huawei
Mate8. One hundred volunteers were asked to take 10 photos
of each hand under indoor natural light and a flashlight,
holding the smartphone and choosing the hand angles as
desired. There were 2,000 palmprint images belonging to
200 categories in total. A target recognition algorithm based
on the histogram of oriented gradients (HOG) was applied for
palm detection, and key points were identified in the detected
palm area by regression tree algorithms. Based on key points,
ROIs can be extracted through a distance-based approach.
More details about the ROI extraction on the XJTU-UP
database can be found in [39]. All of the images were extracted
as ROIs with a size of 280 × 280 pixels. We chose two
datasets, denoted as HWN (Huawei under natural illumination)
and IPN (iPhone under natural illumination).

B. Implementation Details

Our method is trained with the Adam optimizer, the learning
rate of 0.00001, 200 epochs in each iteration, and the batch
size of 32. Contactless palmprint ROI images are resized to
64 × 64 pixels. For each experiment, we randomly divide the
dataset into 10 folds. Each fold maintains the same category
proportion as the original dataset. For example, there are
2 images from each subject in each fold on the MPD dataset,
and there is 1 image for each subject from each fold on the
XJTU-UP dataset. Afterwards, 1-fold is taken as the test set
each time. Among the remaining 9 folds, 8 folds are used
for the training set, and 1-fold is treated as the validation
set to determine the value of the parameter with grid search.
In the training set, we randomly remove 10%, 20%, and 30%

of subjects from each domain, and the removed subjects in
different domains do not overlap to ensure that all subjects
exist in at least one domain.

C. Comparisons With Different Feature Learning-Based
Approaches

We compared the performance of our method and dif-
ferent feature learning-based methods on each dataset with
different missing rates. ResNet-50, AlexNet, and VGG-16
are applied as the classifiers and trained with complete data,
where missing subjects in the missing domain are copied from
the corresponding subjects of the other domain. Meanwhile,
the same classifiers are trained with the dataset, which was
completed using our method. ResNet-50 trained with complete
ground-truth data is regarded as the baseline. The experimental
conditions of these three classifiers (ResNet-50, AlexNet, and
VGG-16) are the same. We apply the cross-entropy loss func-
tion, ADAM optimizer, learning rate of 0.0002, 200 epochs,
and batch size of 32.

The top-1 classification accuracies on the MPD database are
listed in Table I, where the baselines, trained with complete
ground-truth data, on XM and HW. It is obvious that the
proposed method achieved significant performance in every
situation. In particular, when 10% of subjects were missing,
the best top-1 accuracies were 100% for Xiaomi and Huawei
on our method with ResNet-50, which was the same as the
baseline and over 5% higher than the mixture with the same
classifier. In addition, the top-1 recognition accuracy of our
method showed a relatively slight decline as the missing rate
rose. When 30% of subjects were missing, the best top-1
accuracies were 99.25% and 98.5% for Xiaomi and Huawei,
respectively, on our method with ResNet-50 or VGG16. Com-
pared with other methods, the top-1 recognition rate of our
method was the closest to the baselines trained with complete
ground-truth data.

The top-1 classification accuracies on the XJTU-UP
database are listed in Table II, where the baselines on HWN
and IPN are 98.96% and 99.48%, respectively. Our method
outperformed the mixture methods in most situations. In par-
ticular, the best accuracies were 86.98% and 87.50% for HWN
and IPN, respectively, on our method with ResNet-50 with a
missing rate of 30%.

Fig. 6 and Fig. 7 show the cumulative match characteristic
(CMC) curves on the MPD and XJTU-UP databases, respec-
tively. The CMC curves confirmed our method outperformed
the comparison approaches. It can also be observed in Fig. 6
and Fig. 7 that our method showed a significant improvement
in the rank-5 recognition rate, which is the probability that the
top five results with the highest confidence contain the correct
result.

D. Comparisons With Other Image-to-Image Models

We conducted several experiments to compare the state-
of-the-art image-to-image translation approaches, including
pix2pix [26], CycleGAN [30], RAU-net [40], and Attention-
GAN [41].

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on January 10,2025 at 07:21:00 UTC from IEEE Xplore.  Restrictions apply. 



4950 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 6. CMC curves on MPD databases: (a-c) are the CMC curves on the XM dataset with missing rates of 10%, 20%, and 30%, respectively. (d-f) are the
CMC curves on the HW dataset with missing rates of 10%, 20%, and 30%, respectively. (The dotted line represents rank=5.)

Fig. 7. CMC curves on the XJTU-UP databases: (a-c) are the CMC curves on the HWN dataset with missing rates of 10%, 20%, and 30%, respectively.
(d-f) are the CMC curves on the IPN dataset with missing rates of 10%, 20%, and 30%, respectively. (The dotted line represents rank=5.)

1) Pix2pix is a general-purpose model for image-to-image
supervised translation tasks.

2) CycleGAN can translate images from a source
domain to a target domain using the cycle-consistency
loss.

3) RAU-net is an improvement of pix2pix, which changes
the generator from a traditional U-Net into a residual
attention U-Net.

4) AttentionGAN can identify the most discriminative
foreground objects and minimize the change in the
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TABLE I
THE TOP-1 ACCURACY (%) OF DIFFERENT RECOGNITION METHODS ON THE MPD DATABASE

TABLE II
THE TOP-1 ACCURACY (%) OF DIFFERENT RECOGNITION METHODS ON THE XJTU-UP DATABASE

TABLE III
THE TOP-1 ACCURACY (%) OF ResNET-50 WITH DIFFERENT DATA SYNTHESIS METHODS ON THE MPD BATABASE

TABLE IV
THE TOP-1 ACCURACY (%) OF ResNET-50 WITH DIFFERENT DATA SYNTHESIS METHODS ON THE XJTU-UP DATABASE

background. The attention-guided generators in Atten-
tionGAN can produce attention masks and then fuse
the generated output with the attention masks to obtain
high-quality target images.

Note that all these methods used ResNet-50 as the classifier
using similar hyperparameters with a slight difference in each
model to achieve the best performance. The experimental
settings, such as the training and testing data split and the
incomplete data simulation method, were consistent.

The classification results of the methods on the MPD
database and XJTU-UP database are shown in Tables III and
IV, respectively. We can observe the significant improvement
in our method in these tables, and the recognition accuracies
of our method showed a relatively slight decline as the
missing rate increased. Specifically, all the test samples were
correctly classified by our method on the MPD dataset with a
missing rate of 10%. This dataset has superior image quality
compared to the XJTU-UP dataset, with clearer palm lines

and more detailed texture information as demonstrated in
Figure 5. Additionally, the low rate of missing data allows for
the use of a larger number of real palmprint images during
model training, which helps to improve the generalization
ability of the model. As can be seen from Tables I to
IV, the accuracies of the methods tend to decrease as the
rate of missing data increases. On the MPD database, our
method outperformed all the other image-to-image translation
approaches. On the XJTU-UP database, our method achieved
the same classification rate as AttentionGAN when 10% of the
subjects were missing. Under the missing rate of 30%, the best
accuracies were 86.98% for HWN and 87.50% for IPN by our
method. Fig. 8 show some images generated by our method
and several state-of-the-art methods. As shown in Fig. 8, the
palmprint synthesized by our method best approximated the
corresponding image style among all the methods. Specifically,
compared with Pix2Pix and RAU-net, the images generated
by our method are much clear in palm lines. Compared with
CycleGAN and AttentionGAN, our method preserves more
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Fig. 8. The synthesized images by different methods. From left to right:
input, pix2pix, CycleGAN, RAU-net, AttentionGAN, and ours.

TABLE V
THE ABLATION STUDY RESULT (TOP-1 ACCURACY (%)) ON THE

XJTU-UP DATABASE

texture details. The examples in Fig. 8 shows that our method
not only can achieve the transfer of image style across different
palm imaging devices, but also maintains more discriminative
information of the palm images.

E. Ablation Experiments

We performed an ablation study on the XJTU-UP database
with a missing rate of 10% to show the effect of the
self-attention layer and SPL strategy. The results are listed
in Table V. When self-attention modules were adopted, the
performance increased by over 2% in both datasets. When
further combined with the SPL strategy, our method achieved
the highest accuracy.

F. Parameter Tuning and Sensitivity Analysis

1) Analysis of Scalars of Consistency Loss and Identity
Loss: In this experiment, we demonstrated the performance of
our method under different parameter combinations. We tried
several different combinations of λ and µ on the MPD
database with a missing rate of 30%. As shown in TableVI,
the classification results were relatively stable, when the two
parameters were slightly tuned. In particular, the proposed
method achieved better recognition performance when λ both
and µ are 10.

2) Analysis of Quality Score Component: To assess the
influence of adversarial loss, consistency loss, and identity loss
on recognition results, we performed several experiments on
different quality score schemes on the MPD database with a
missing rate of 30%. As shown in Table VII, the accuracies
achieved by combining consistency loss and identity loss were
higher than those of the methods with a single-loss quality

TABLE VI
THE TOP-1 ACCURACY (%) OF OUR METHOD FOR DIFFERENT COMBINA-

TIONS OF PARAMETERS λ AND µ ON MPD WITH A MISSING RATE OF
30%

TABLE VII
THE TOP-1 ACCURACY (%) OF ResNET-50 WITH DIFFERENT DATA SYN-

THESIS METHODS ON MPD DATABASE

Fig. 9. The influence of rini , rk and n on the MPD database with 30%
missing data, where rk=0.8 and n=4 in (a), rini =0.35 and n=4 in (b), and
rini =0.35 and rk=0.8 in (c).

score. The recognition rate dropped when the adversarial loss
was introduced as the quality score.

3) Analysis of Hyperparameters in the SPL Strategy: We
investigated the influence of rini , rk, n on the MPD database
with 30% missing data. It can be observed in Fig. 9 that the
optimal settings of rini , rk, n are 0.35, 0.8, and 4, respectively.
The recognition results showed relatively slight variations
when rini and n were slightly changed and showed a decrease
of 0.75% when rk was tuned.

V. CONCLUSION

In this paper, we proposed a self-paced CycleGAN with
self-attention modules to solve multi-domain contactless palm-
print recognition with missing data issues. We developed
a novel deep network with CycleGAN to synthesize miss-
ing training data by learning the mapping between different
domains, and self-attention modules were introduced as a
supplement for the convolutional generator to model the
long-range dependencies. Simultaneously, the SPL strategy,
motivated by a human learning mechanism, was adopted in
our model to alleviate the influence of noise in contactless
palmprint images and avoid training instability in the genera-
tive adversarial module. The experimental results showed that
our methods can effectively relieve the decline in accuracies
caused by missing inputs, and our method outperformed
several state-of-the-art approaches in contactless palmprint
recognition.
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However, our method has several limitations in practice.
We assumed that there were only two known devices for image
acquisition. Many kinds of smartphones can be used for palm-
print image collection. In addition, palmprints from unknown
devices can be used in real-world applications. To explore this
issue further, in future work, we can cluster the contactless
palmprint images from unknown devices through unsuper-
vised methods and then investigate the transfer learning-based
recognition model established in the data domains from known
devices to unknown devices.
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