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CrossNet: Cross-scene Background Subtraction
Network via 3D Optical Flow

Dong Liang, Dong Zhang, Qiong Wang∗, Zongqi Wei, Liyan Zhang

Abstract—This paper investigates an intriguing yet unsolved
problem of cross-scene background subtraction for training
only one deep model to process large-scale video streaming.
We propose an end-to-end cross-scene background subtraction
network via 3D optical flow, dubbed CrossNet. First, we design
a new motion descriptor, hierarchical 3D optical flows (3D-
HOP), to observe fine-grained motion. Then, we build a cross-
modal dynamic feature filter (CmDFF) to enable the motion
and appearance feature interaction. CrossNet exhibits better
generalization since the proposed modules are encouraged to
learn more discriminative semantic information between the
foreground and the background. Furthermore, we design a loss
function to balance the size diversity of foreground instances
since small objects are usually missed due to training bias.
Our whole background subtraction model is called Hierarchical
Optical Flow Attention Model (HOFAM). Unlike most of the
existing stochastic-process-based and CNN-based background
subtraction models, HOFAM will avoid inaccurate online model
updating, not heavily rely on scene-specific information, and
well represent ambient motion in the open world. Experimental
results on several well-known benchmarks demonstrate that it
outperforms state-of-the-art by a large margin. The proposed
framework can be flexibly integrated into arbitrary streaming
media systems in a plug-and-play form. Codes are available at
https://github.com/dongzhang89/HOFAM.

Index Terms—CrossNet, Background subtraction, Cross-scene,
3D Optic flow, Streaming media

I. INTRODUCTION

V IDEO background subtraction aims to recognize and seg-
ment all the pixel-level elements of moving foreground

from a dynamic background, which has served as a fundamen-
tal role in a wide range of multimedia community, e.g., video
streaming summarization [1], video source/channel encoding
and compressions such as MPEG series and H.264 [2], and
large-scale streaming media synthesis [3].

In the past several years, this task has made significant
progress. Yet, cross-scene background subtraction is still very
challenging because most of the existing deep learning mod-
els [4], [5] and traditional background subtraction models [6]–
[8] are scene-dependent trained, restricting the consistent per-
formance in open-world cross scenes. In modern multimedia
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systems, edge computing devices capture video online and are
required to real-time synopsize valuable information. However,
edge computing devices usually rely on resource-constrained
embedded platforms; thus, deploying an online background
subtraction module without scene-specific supervised training
is vital in the industry.

Following the most common way, the existing successful
methods usually adopt strategies that are pre-training the back-
ground subtraction model in a vast dataset and then fine-tuning
it in new scenes. Transfer learning [9]–[11], teacher-student
[12], [13] and meta-learning strategy [14] could further adapt
the model smoothly to new domains. However, the existing
works that be able to transfer learning are originally designed
for image classification tasks; The domain adaptation strate-
gies for background subtraction require time-consuming pixel-
wise labels in both source and target domains. An image with
the size of 2048×1024 takes 1.5 hours to get a fine label and
7 minutes to generate a coarse one [15]. Therefore, the domain
adaptation strategies learn from noisy data that may affect
their inference performance in practice. In addition, some
methods [16]–[18] also assume that the images in two domains
have the same task prediction. Since the foreground semantic
has large diversity, mapping the source and target domains
is challenging. In our previous research work, we proposed a
series of background subtraction methods to deal with dynamic
scenes [7], [19]–[21], and we also proposed an interaction
scheme [22], [23] between the background subtraction method
and deep learning models to enhance the flexibility of both
sides. However, none of the proposed approaches are free
from extra labeling and supervised learning in a new scene
to maintain reliable foreground segmentation performance.

This work focuses on the challenging task of video back-
ground subtraction in unseen scenes without any additional
labeling and training. The proposed scheme aims to achieve
scene adaptation for background subtraction via fine-grained
motion feature representations and interactions. Since the
optical flow is insensitive to gradual motion and is not robust to
ambient lighting changes in the open world, we first design 3D
hierarchical optical flows (3D-HOP) to convert instantaneous
flows to fine-grained motion cues. We construct a cross-modal
dynamic feature filter (CmDFF) to realize feature interactions
between motion and appearance. Unlike using optical flow as
a motion trigger, the proposed scheme tends to learn semantic-
level discriminative information between the motion patterns
of the foreground instances and the background. Therefore,
better adaptability and robustness in cross-scene tasks can be
obtained. In addition, since small foreground objects are usu-
ally missed in cross-scene background subtraction tasks due to
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the dataset bias, we design a Class-in Scale Focal (CS-Focal)
Loss to balance the size diversity of foreground instances.
The proposed model can segment the video foreground by
deploying them in an unseen scene without fine-tuning.

The main contributions of this paper are five folds:
• Dense optical flow is an instantaneous motion context

that is less robust and inadequate to describe motions at
the pixel level. We, therefore, design the 3D hierarchical
optical flows (3D-HOP) to combine the long-term and
short-term flow field estimation, converting instantaneous
flows to fine-grained motion cues.

• We propose an end-to-end network, CrossNet, to realize
cross-scene background subtraction in large-scale video
streaming without any extra training. We embed a cross-
modal dynamic feature filter (CmDFF) to realize the
interaction between motion and appearance features. We
also improve the pixel-level Focal Loss to a Class-in
Scale Focal (CS-Focal) Loss fashion to balance the size
diversity of the foreground instances.

• Our whole background subtraction framework, including
the proposed 3D-HOP and CrossNet, called Hierarchical
Optical Flow Attention Model (HOFAM), is compared
with state-of-the-art methods via comprehensive experi-
ments cross scenes. All results consistently endorse the
superiority of the proposed approach.

This paper was partially presented in [24] while further the-
oretical investigation and extensions with thoroughly analyzed
and discussed. Extensive evaluation has been undertaken to
compare it against the state of the arts. The remainder of this
paper is organized as follows. We discuss the related work
in Section II. We describe the proposed method in detail
in Section III. The experimental results are presented and
discussed in Section IV, and the conclusions, limitations, and
future work are presented in Section V.

II. RELATED WORK

A. Unsupervised Background Subtraction

Early studies focused on statistical distributions to build the
background model [25]–[27]. Spatio-temporal local descrip-
tors [7], [20], [28]–[30] reveal the Spatio-temporal dependence
that the background models can hold. The above statistical
modeling methods usually have a low computational cost,
which benefits resource-constrained multimedia systems. To
eliminate the impact brought by illumination changes and dy-
namic background, imprecise progressive background updat-
ing solutions are commonly used [26]: 1) selective updating,
in which a new sample is added to the model only if it is
classified as a background sample, and 2) blind updating, in
which every new sample is added to the model. Using selective
updating, one must decide whether each pixel value is part of
the background. Using the segmentation results as the updating
criterion can be seen as a simple way to achieve this task,
while invalid segmentation decisions may result in incorrect
segmentation afterward. The blind updating mechanism is not
subject to this deadlock scenario since it does not involve
any updating decision; Blind updating mechanism allows
intensity values not belonging to the background to be added

to the model, which leads to more error accumulation as
the foreground pixels may erroneously become part of the
model. A high update rate leads to noisy segmentation due to
the sensitivity to minor or temporary changes whereas a low
update rate yields an outdated background model and results
in false foreground segmentation.

B. Background Subtraction based on CNN

Brahamand [31] proposes the first approach using CNNs to
undertake background subtraction. A scene-specific network is
trained by corresponding image patches of frames. Branches
with different sizes in Cascade CNN [5] are connected to
detect multi-scale foreground objects, while temporal infor-
mation in videos has not been considered. MFC3-D [32]
leverages multi-scale 3-D convolution to detect the foreground.
MSNet [33] uses Generative Adversarial Networks to generate
the background. A probabilistic model [34] divides each video
frame into patches, fed to a stacked denoising auto-encoder to
extract significant features. All the methods are scene-specific.
To our knowledge, DeepBS [35] is the first method to utilize a
trained CNN for the background subtraction task across video
scenes. For the training data, it randomly selects 5% samples
with the corresponding ground truths of each subset from the
CDNet2014 dataset. However, most CNN-based background
subtraction models have not considered temporal information.

C. Semantic Segmentation

Semantic segmentation methods have enabled remarkable
progress recently. Based on a pre-trained ResNet model,
PSPNet [36] uses atrous convolution to perform feature ex-
traction, in which the pyramid pooling module collects and
integrates contextual information between different scales.
DeepLabV3+ [37] applies depth-wise separable convolution
to both the Atrous Spatial Pyramid Pooling and decoder
modules. It utilizes the Xception model to integrate multi-
scale information for the segmentation task. A boundary-aware
feature propagation [38] shares local features within their
regions and learns the boundary as an additional semantic
class to create the network to be aware of object boundary
layouts. CCL [39] is an aggregation scheme called gated sum,
which aims to select different scale feature maps. It uses the
context-contrasted local module in the network to generate
multi-scale and multi-level context-aware local features. Most
semantic segmentation approaches bring semantic annotations
to independent frames, ignoring motion cues and temporal
relevance. These are crucial to discriminating the foreground
and dynamic background elements in background subtraction.

D. Pixel-level Motion Estimation

Sequences of ordered frames allow motion estimation as
either instantaneous image velocities or discrete image dis-
placements [40]–[42]. Most pixel-level motion estimation
methods are based on optical flows. Lucas and Kanade [40]
use spatial intensity gradients and Newton–Raphson itera-
tions to formulate computable scene motion flows. Gunnar
Farnebackused [43] uses exact polynomial transforms to cal-
culate large displacement dense optical flow. FlowNet [44]
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Fig. 1: The proposed background subtraction model includes an end-to-end cross-scene background subtraction network
CrossNet and 3D optical flow. The input is the original frame IT , its 3D optical Flow Hop(T ), and the output is the binary
foreground segmentation mask. CrossNet integrates multiple CmDFF modules in the up-sampling process to fuse the features of
the encoder and the decoder, where Ei and Opi are featured in the encoder for extracting appearance and optical flow features,
respectively. Di are the decoder features, and Atti refer to the CmDFF modules in the corresponding layers. CrossNet uses a
full convolution structure as the backbone network.

and FlowNet2.0 [41] update the training using warping struc-
tures to process optical flows accurately. ScopeFlow [45]
handles optical flow prediction in dynamic environments.
GLU-Net [46] uses global and local correlation layers to
deal with dense optical flow problems. To deal with object
occlusion, LiteFlowNet3 [47] introduces adaptive adjustment
and local flow consistency. MANet [48] fuses multi-frame
features and directly learns the motion cues of an extended
period. Selflow [49] uses self-supervision to calculate optical
flows. Flow-Guided Feature Aggregation [50] finds that optical
flows can improve the performance of object segmentation.

III. THE APPROACH

A. Motivations

In the above work, the existing background subtraction
methods are unsupervised pixel-level binary classification.
They build pixel-wise statistic model in a stochastic pro-
cess [6], [8], [25], [26] or model the context among pix-
els [22], [23], [27]. The advanced semantic segmentation
methods have enabled remarkable progress recently [36]–[38].

However, they usually bring high-cost pixel-wise annotations
and scene-specific training while ignoring the motion cues
and temporal relevance. Fundamental issues needed to be
solved: 1) Traditional unsupervised background subtraction is
often trapped by inaccurate online model updating; 2) The
supervised methods, such as the off-the-peg deep models,
heavily rely on scene-specific information, thereby limiting
their cross-scene performance; 3) Optical flow inadequately
represents ambient motion in the open world.

B. CrossNet

Our basic viewpoint is that background subtraction is related
to fine-grained motion semantics. For example, motion regions
can be foreground patterns, but areas of repetitive motions
(e.g., waving tree branches) belong to the background pattern.
On the other hand, dense optical flow is an instantaneous
motion context that is less robust and inadequate to describe
motions at the pixel level. In contrast, the proposed hierar-
chical 3D optical flow HOP (c.f. Section III-C) can leverage
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both long-term and short-term motion to organize multi-scale
optical flow to generate a fine-grained motion state space.

The proposed framework then embeds the 3D-HOP motion
feature with the appearance feature via the proposed CmDFF
(c.f. Section III-D). CmDFF is the critical module to modify
a traditional CNN-based encoder and decoder deep network
to build our CrossNet. CmDFF further highlights the scene-
independent motion semantics to identify the suspected fore-
ground while filtering out the scene-dependent background
movements. The proposed scheme discriminates the scene-
independent motion patterns in an unseen scene to avoid the
domain shift. Therefore, a better cross-domain generalization
can be obtained without any additional learning phase.

Loss function also matters. Besides the most commonly
used L1 and cross-entropy loss, one usually weights different
loss functions in multi-task learning to adapt to specific
tasks. Several loss functions have been formulated to deal
with the imbalanced problem. For example, weighted cross-
entropy loss [51], Focal loss [52], Dice loss [53], and Tversky
loss [54]. In practice, however, preserving large foreground is
much easier than small foreground under the same method.
We aim to construct a new loss function (c.f. Section III-E) to
preserve the foreground with a small size and to balance the
size diversity of foreground instances.

We integrate two streaming (the original frame IT and its
3D optical Flow Hop(T )) and then embed their features in
CrossNet. The overall architecture of the proposed cross-scene
background subtraction network is illustrated in Figure 1,
which integrates multiple CmDFF modules in the up-sampling
process to fuse the features of the encoder and the decoder,
where Ei and Opi are featured in the encoder for extracting
appearance and optical flow features respectively in each
layer. Di are the decoder features, and Atti refer to the
CmDFF modules in the corresponding layers. CrossNet uses
an encoder and decoder-based fully convolution structure as
the backbone network. The image and its optical flows are fed
to their respective encoders and then output the foreground
segmentation mask 256×256×1. The encoder and decoder
structures are entirely symmetrical, with 8 convolution layers
and 16 convolution layers. The step sizes of the down-
sampling (encoder) and up-sampling (decoder) convolution are
2. The width and length of the encoder’s feature map are
reduced to 1/2 of the original one when it passes through
a convolution layer. The length and width of the decoder’s
feature map are doubled after each up-sampling step. The
model also uses convolution with step size 1 in the decoder
layer when integrated with the CmDFF modules.

C. 3D Hierarchical Optical Flows

As an instantaneous motion cue, optical flow lacks sufficient
stability when representing motion, which is mainly mani-
fested in the following two aspects: 1) The motion vector is
computed based on different gray levels of pixels; when the
contrast is low, the motion vector would be invalid like the
hole in Figure 4 Op(τ1) and Op(τ2); 2) The time interval
between adjacent frames is very short, yet the foreground’s
movement speed is random, which leads to weak responses

to the foreground with slow motion. Optical flow with a long
interval has the object’s long-term motion cues, but an object’s
outline is imprecise, while optical flow from a short interval
has weak responses to the foreground with slow motion such
as Op(τ1) in Figure 1.

As illustrated in Figure 1, 3D-HOP aims to solve the
problem that optical flows from adjacent image frames in-
sufficiently describe motion cues. The current frame and
neighboring frames with different lengths formulate three
types of optical flows to complement each other. Suppose
that the current frame is at time T , and the frames at time
T − τ1, T − τ2 and T − τ3 using the intervals τ1, τ2 and
τ3, respectively. After calculating the optical flows at time
T , denoted as Op(τ1), Op(τ2) and Op(τ3), we assign the
optical flows with different intervals in three channels to build
hierarchical optical flows Hop(T ). We use selflow [49] to
calculate all the optical flows since this method is a self-
supervised method, which helps promote it into a general
cross-scene training task without the need for complex optical
flow annotation of video frames. We also prepared samples
generated by the latest optical flow methods [55]–[57] for
performance comparison. The performance comparison details
of various optical flows will be detailed in the experiments.

D. Cross-modal Dynamic Feature Filters (CmDFF)

There are several encoder-decoder networks designed for
image segmentation. The encoder-decoder networks mainly
consider using different scales of features and gradually recov-
ering sharp object boundaries in the decoder path. Most use
bilinear upsampling directly, which lacks information sharing
of feature maps at different levels and could harm spatial
localization recovery. Unlike the above scheme, our task is
to learn cross-modal (appearance and motion) features, which
require higher representation and generalization capabilities
for feature learning. Inspired by the work of global attention
upsample [58], high-level features with abundant category
information can be used to weight low-level information
to select precise resolution details. Different from [58], the
proposed CmDFF merges the decoder and encoder features
through dense attention processes during the decoder phase.
In detail, high-level features guide the CmDFF modules with
global information to weight useful low-level features, which
contribute to the prediction in the image. Meanwhile, the
encoder’s features are re-weighted by the decoder’s layers
at the pixel level and then concatenated with the latter. The
proposed cross-modal dynamic feature filter module is shown
in Figure 2. The decoding process is from the previous
decoding layer Di−1 to the next layer Di. In this process,
the CmDFF module weights the decoder’s features through
the encoder. Inside the CmDFF module, the input includes Ei

and Opi, and the decoder’s previous layer Di−1. The output
is a decoder layer Di. To explain the operation mechanism
of CmDFF clearly, we use Bw, Bup sampling and Be op as the
intermediate processes. When we have obtained two feature
maps Ei ∈ RH×W×C and Opi ∈ RH×W×C (H and W are
the height and width of the input feature map, and C indicates
the channel index of the feature map. To get Di, we first
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Fig. 2: Cross-modal dynamic feature filter (CmDFF). The
decoding process is from the previous decoding layer Di−1 to
the next layer Di. In this process, the CmDFF module weights
the decoder’s features through the encoder. Inside the CmDFF
module, the input includes Ei and Opi, and the decoder’s
previous layer Di−1. The output is a decoder layer Di.

concatenate the two feature maps Ei and Opi from two en-
coders. After concatenating, the channel becomes twice (2C)
as much as the original one (C), and then Be op ∈ RH×W×C

is obtained by convolution:

Be op = conv0(Relu(Ei⊖Opi)), (1)

where conv0 denotes a 3×3 convolution used to extract
appearance features and reduce channels, ⊖ denotes the feature
map concatenation along the channel dimension, and Relu is
the active function.

We consider two ways of fusing appearance features Ei,
and optical flow features Opi. One of the processes is to fuse
the two input features according to the corresponding pixel
addition, just like the fusing from in [59]; the other way is
to concatenate the two features in the channel dimension:
the corresponding number of the channels is doubled, and
then use kernel 3×3 convolution with step size 1 to reduce
the channel dimension to the original number. Because the
channels in our network express different feature information,
the fusion method of directly adding corresponding channels
cannot guarantee that the semantic information expressed by
the features involved in the operation is consistent [60]. So,
we concatenate the outputs of different channels and then use
the subsequent network layer to learn the channel association.

In the decoding layer Di−1 ∈ RH/2×W/2×4C , we have
Bup sampling ∈ RH×W×C by undertaking up-sampling convo-
lution. Then, the weighted coefficient tensor Bw ∈ RH×W×C

(having been normalized to the range of 0 and 1) is obtained
from convolution and activation operations:

Bw = σ(BN(conv1(Relu(Bup sampling)))), (2)

where σ is the Sigmoid function, conv1 is the convolution
of kernel 3×3 and step 1 to learn the weighted coefficient
and BN is batch normalization (BN). Bw is combined with

the feature map Be op by multiplying pixel to obtain the
weighted feature map. After batch normalization, we get the
decode’s features from Bup sampling. To prevent over-fitting
and improve the robustness of the network, we also add the
Dropout operation to the original decoder. Each node has a
50% probability of being suppressed in the training process,
and we remove this dropout operation in network inference.
The weighted feature map of the encoder and the features of
the decoder are concatenated to obtain Di ∈ RH×W×2C in
the ith decoding layer.

Di = (Bw ⊙Be op)⊖BN(Dropout(Bup sampling)), (3)

where ⊙ denotes the Hadamard product operation. The cross-
modal dynamic feature filter (CmDFF) realizes learning cross-
modal (appearance and motion) features with higher represen-
tation and generalization capabilities for feature learning.

E. Class-In Scale Focal (CS-Focal) Loss

In background subtraction, there are two types of imbalance
problems. One is the foreground/background imbalance (cross-
class imbalance), where the background pixels dominate the
whole image. Another case is that large objects dominate
training, a kind of intra-class imbalance.

1) Focal Loss : Focal Loss [52] is proposed for solving the
first type of unbalanced problem, which is based on the cross
entropy function and expressed as:

Lweighted-CE(p, y) =

{
−α log(p) y = 1

−(1− α) log(1− p) y = 0,
(4)

where p represents the probability of model prediction, com-
pared to the ground truth of the foreground label y = 1 and
the background label y = 0. α is the parameter matrix of the
foreground and background pixel samples.

2) CS-Focal Loss: For the case where the number of the
background samples is larger than that of the positive ones,
α in Eq (4) is set to be a large value so that the impact of
the foreground samples on the model loss function is larger
than that of the negative samples. On this basis, a hard-sample
adjustment factor γ is added, and Focal Loss is finally obtained
as follows:

Lfocal =

{
− α(1− p)γ log(p) y = 1

− (1− α)pγ log(1− p) y = 0,
(5)

where γ regulates the contribution of hard and easy samples,
for the hard sample case, it will get a lower p. The smaller p
is, the larger (1 − p)γ is; thus, a relatively large loss will be
generated. Similarly, for a sample case, it may have a higher
p. The larger p is, the smaller (1 − p)γ is, and the focus of
model training is on the hard samples. In the experiments,
focal loss is adopted as a baseline loss for segmentation.

We generate a visual interpretation of the loss function to
explore better loss functions for background subtraction in the
training process. In Figure 3, for example, Fg = 0.6 and
Bg = 0.4 refer to the predicted p of the foreground and
the background. Due to scale differences in categories, the
focal loss may increase the training weight for the foreground,
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Fig. 3: Result comparisons of different loss in pixel-level. CS-Focal loss strengthens the loss of the small targets, thus effectively
improving the possibility that small objects can be correctly segmented.

compared to l1 loss. However, foreground objects have differ-
ent scales and objects with different scales must be balanced
to improve the segmentation result of small objects. When
Fg = 0.9 and Bg = 0.05 in Figure 3 left, the focal loss value
of the human subjects is treated differently from that of the
cars. We tend to improve the focal loss to balance the objects
with different scales inside the foreground class based on focal
loss.

First of all, we define the area ratio S(fg) between the
foreground and the background from one image frame and
then define a balance coefficient inside class β, as follows:

β = t3 min(
1

S(fg)
, 50) (6)

The reason we set the minimum value of 1
S(fg) and 50 is to

prevent the potential scene from infinity, and 50 is the value
set after sampling the small object area in the training images.
t3 is the normalized parameter. The proposed Class-in Scale
Focal (CS-Focal) loss defined as,

LCS−Focal =

{
− βα(1− p)γ log(p) y = 1

− (1− α)pγ log(1− p) y = 0.
(7)

From Figure 3, the visualization comparison of focal loss and
CS-Focal loss is shown on the left. We can see that in the
training process, CS-Focal loss strengthens the loss of the

small targets, thus effectively improving the possibility that
small objects can be correctly segmented. To train the model
stably, we apply l1 loss as a standard regularization term. It
is measured between the prediction p and ground truth y. The
final loss function can be expressed as:

L = t1LCS-Focal + t2Ll1, (8)

where t1 and t2 are two tunable hyper-parameters, which
denote weights between the two terms in the final loss.

IV. EXPERIMENTS

In this section, we first give a brief introduction to the
experimental settings, implementation details, and evaluation
metrics (in Subsection IV-A). Then, we show the ablation
study (in Subsection IV-B). After that, the experimental results
and analyses on CDNet2014 [61], LIMU [62] and LASI-
ESTA [63] are respectively given in Subsection IV-C and
Subsection IV-D. Finally, we further show the precision-recall
analysis in Subsection IV-E.

A. Training Settings and Implementation Details

Training CrossNet. Following the training setting of
DeepBS [35], for the training of our model, 5% samples are
randomly selected with their ground truths of each subset from
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Op(τ3)

Hop(T) Results

Fig. 4: Hierarchical optical flows and background subtraction results. The left is the image frame and optical flows (τ1, τ2, τ3),
and the right is the fused optical flows and the segmented result. Green: False Positive, Red: False Negative.

the dataset CDNet2014 to train CrossNet. The remaining 95%
of samples in CDNet2014 are used as the test dataset without
any overlap of the training set. The segmented foreground is
also obtained without any post-processing.

Basic Optical Flow Calculation. For the proposed 3D-
HOP, we utilize Selflow [49] to obtain basic optical flow. For
training, Selflow extracts 10000 images of Sintel movie [64]
for self-training. We infer optical flow directly in the back-
ground subtraction datasets without additional training, and
the speed of inferring is 18 fps on two GTX2080Ti. To verify
the impact of basic optical flow generation performance on
3D-HOP, we also prepared samples generated by the latest
optical flow methods [55]–[57] for performance comparison.
The performance comparison details of various optical flows
will be detailed in the following part.

Hyper Parameters. All our hyperparameters settings used
in the model are chosen experimentally. For the hierarchical
optical flows, we set τ1 = 1, τ2 = 5, and τ3 = 10. In the
proposed loss function, we set t1 = 0.8, t2 = 0.2, t3 = 0.25,
α = 0.75, and γ = 0. The training batch size is 16, and
we run 16000 epochs. Adam is used as the optimizer and its
parameters beta1 = 0.95, and beta2 = 0.999. The learning rate
is set to a small value 5× 10−5.

Comparison Methods. We add comparison methods in
the experiments and divide them into three folds: 1) cross-
scene deep models (single model); 2) specific-scene models
(including deep models and background subtraction meth-
ods); 3) semantic segmentation models. For cross-scene deep
models, STAM [59] and DeepBS [35] are trained in the
same way as CrossNet. We also add experiments of the pro-
posed model without CmDFF (CrossNetnoAtt) and Optical
flow (CrossNetnoHOP ). For semantic segmentation, PSP-
Net [36] and DeepLabV3+ [37] are trained with ADE20K [65]
because there is no semantic annotation in CDNet2014. Ac-
cording to the protocol recommended in [66], we define

some classes as foreground, including {person, car, cushion,
box, book, boat, bus, truck, bottle, van, bag, and bicycle}.
We compare PSPNet and DeepLabV3+ on cross-scene back-
ground subtraction because the semantic background subtrac-
tion presents potential performance advantages.

Evaluation Metrics. True Positive (TP ), True Negative
(TN ), False Positive (FP ), and False Negative (FN ) are used
in the evaluation.

Recall = TP/(TP + FN) (9)

Precision = TP/(TP + FP ) (10)

F −Measure = 2×P.×R./(P.+R.) (11)

are employed as stranded metrics for quantitative evaluation.
Recall, Precision, and F-measure for image segmentation are
pixel-level evaluations that accumulate all the positive and
negative pixels in all the testing image frames but ignore the
foreground scale, which is unfair to small regions’ evaluation.
Taking no account of object scale, to evaluate the results
of background subtraction for small regions fairly, we use
Mean Dice based on the Dice coefficient as follows:

Mean Dice =
2

N

N∑
i=1

(TP + FN)i∩(TP + FP )i
(TP + FN)i∪(TP + FP )i

(12)

where N is the number of the input frames that contain
the foreground, (TP + FN)i is the ground truth label in
frame ith, (TP + FP )i is the prediction result of frame
i. Mean Dice is calculated separately for evaluating the
integrity of individual foreground objects rather than using
global pixel-level counting.

B. Ablation Study

In the ablations, we verify the roles of HOP, CmDFF, and
CS-Focal loss function with related combinations in Table I.
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TABLE I: Ablation study on CDNet2014 [61] dataset.

Op[τ1] Op[τ2] Op[τ3] CmDFF LossCS−Focal Lossfocal Lossl1 F-measure Mean Dice
1 ✓ ✓ ✓ ✓ ✓ ✓ .9776 .9466
2 ✓ ✓ ✓ ✓ ✓ .9704 .9416
3 ✓ ✓ ✓ ✓ .9642 .9368
4 ✓ ✓ .9433 .8747
5 ✓ ✓ ✓ .9716 .9346
6 ✓ ✓ ✓ ✓ ✓ ✓ .9730 .9408
7 ✓ ✓ ✓ ✓ ✓ .9735 .9423
8 ✓ ✓ ✓ ✓ ✓ .9706 .9385
9 ✓ ✓ ✓ ✓ ✓ .9661 .9334
10 ✓ ✓ ✓ .9030 .8705
11 ✓ ✓ ✓ ✓ ✓ .8791 .8502

Video Frame Atten result(Att7) ResultBw(Att7) Be_op(Att7)

Fig. 5: Visualization of the CmDFF results. Each column has five images, including the image frame, processing results (Bw,
Be op, Attenresult) of the CmDFF (Att7) module, and the segmentation result. Green: False Positive, Red: False Negative.

Effectiveness of 3D-HOP. Compared to the model using
optical flows calculated with adjacent frames, the model using
the proposed 3D-HOP gets a noticeable F-measure and Mean
Dice improvement. As shown in Figure 4, hierarchical optical
flows (orange border) provide sufficient motion cues to guide
the background subtraction. In the scene shown in Figure 4,
optical flows Op(τ1), Op(τ2) appear to occupy a large area
inside the car. Meanwhile, Hop(T ) presents a relatively com-
plete foreground area in the segmented result.

The effectiveness of CmDFF. For CmDFF, compared to
the model without using CmDFF, adding it brings obvious
F-measure and Mean Dice gains.

In Figure 5, we visualize the processing results of the 7th

(Att7) in the decoder. Because the CmDFF involves multi-

channel and multi-layer processes, it is difficult to visualize the
process of results directly through two-dimensional images. So
we average the results of one layer in the channel dimension
to reveal this trend roughly. The results of CmDFF highlight
the foreground object’s area, comparing the output (Att7) and
the final result. Bw and Be op are the intermediate steps to get
the Atten result. In Bw (Att7) and Be op (Att7), Bw and Be op

present distributions of the original feature from the decoder
and the encoder with object appearance and optical flows.

Effectiveness of CS-Focal loss. Compared to focal +
l1 loss, CS − Focal + l1 loss has noticeable improvement
and achieves the best Mean Dice scores and F-measure.
particularly, the gain in Mean Dice is significant. In Figure 6,
the proposed loss has better performance with small objects.
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Video Frame Focal Loss Focal + L1 Loss CS-Focal + L1 Loss

Fig. 6: Comparisons of small objects with different losses. Each row has four images including image frame, segmentation
results of focal loss, focal+l1 loss, and CS-Focal+L1 loss, from left to right. Green: False Positive, Red: False Negative.

TABLE II: The average performance on CDNet2014 [61] dataset.

Method Mean Dice ↑ Recall ↑ Precision ↑ F-measure ↑ Model Types
CrossNet-HOFAM .9466 .9661 .9893 .9776
CrossNetCmDFF .8502 .8369 .9268 .8795
CrossNetnoHop .8705 .9297 .8789 .9036 Cross-scene

DeepBS [35] .7041 .7545 .8332 .7548 deep models
STAM [59] .9452 .9458 .9851 .9651

BSUV-Net 2.0 [67] .7598 .8619 .8295 .8556
Cascade CNN [5] .8947 .9506 .8997 .9209

FgSegNet [4] .5738 .6073 .6235 .6094 Specific-scene
FgSegNetV2 [68] 7544 7161 7632 .7389 deep models

Motion U-Net [69] .9046 .9188 .9557 .9369
GMM [6] .5361 .6846 .6025 .5707
CPB [7] .6157 .7049 .6223 .6325 Specific-scene

SuBSENSE [8] .6843 .8124 .7509 .7408 background subtraction
RT-SBS [70] .7341 .8507 .8064 .8280

We utilize the color green and red to mark the false positives
and false negatives in the results.

C. Results on CDNet2014

Since CrossNet has been trained on the CDNet2014 dataset,
this experiment’s purpose is not to test the capability of cross-
scene background subtraction but to evaluate the proposed
single model compared with other scene-specific training
models. For the cross-scene models STAM [59], BSUV-
Net 2.0 [67], and DeepBS [35] are trained in the same
way as CrossNet. We also add experiments of the pro-
posed model without CmDFF (CrossNetnoAtt) and Optical
flow (CrossNetnoHOP ). For specific-scene models, four deep
models FgSegNet [4], FgSegNetV2 [68], Motion U-Net [69],

and CascadeCNN [5], three background subtraction models
GMM [6], CPB [7], RT-SBS [70] and SuBSENSE [8] are
trained with a scene-specific style on CDnet2014 following
their default experiment settings. For semantic segmentation
models, PSPNet [36] and DeepLabV3+ [37] are trained with
ADE20K [65] dataset using their default model settings.

From Table II, the Recall of CrossNet is 0.9661, the Recall
of Cascade CNN with 0.9506 ranks second, and STAM ranks
third with 0.9458. CrossNet improves Recall by 1.55%. For
F-measure, CrossNet, as a single model, gains the best perfor-
mance of F-measure with 0.9776, which is 4% better than the
best specific-scene deep model Motion U-Net with F-measure
0.9369. These results indicate CrossNet could maintain high
performance even with limited training data.
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Video Frame STAMHOFAM PSPNet DeepLabV3+SU-CPB

Fig. 7: Comparison on cross-scene dataset LIMU. Each column: image frame, segmentation results of the proposed CrossNet-
HOFAM, SU-CPB, STAM, PSPNet, and DeepLabV3+, from left to right. Green: False Positive, Red: False Negative.

TABLE III: F-measure of different methods on LIMU [62] dataset.

Method CameraParameter Intersection LightSwitch Overall Model Types
CrossNet-HOFAM .7979 .7851 .8493 .7981

CrossNetnoCmDFF .6998 .7364 .7965 .7291
CrossNetnoHOP .7055 .7294 .6981 .7130 Cross-scene

DeepBS [35] .6705 .5545 .6332 .6073 training
STAM [59] .7742 .6749 .7163 .7344 on CDnet2014

Cascade CNN [5] .1025 .0453 .0277 .0585
FgSegNet [4] .2668 .1428 .0414 .1503

GMM [6] .6372 .6423 .6743 .6519
CPB [7] .6545 .6778 .6633 .6652 Specific-scene

SU-CPB [23] .7484 .7672 .8211 .7789 background subtraction
SuBSENSE [8] .6744 .6530 .6934 .6753

PSPNet [37] .8656 .1303 .6510 .7506 Semantic
DeepLabV3+ [36] .7739 .6766 .3330 .6986 training on ADE20k

D. Cross-scene Test

We compared the existing state-of-the-art cross-scene deep
models, specific-scene deep models, background subtraction
methods, and semantic segmentation models with CrossNet
without additional training.

LIMU and LASIESTA Dataset. LIMU includes scenes
with a variety of dynamic backgrounds. LASIESTA collects
many typical real indoor and outdoor sequences organized into
different categories, each covering a specific challenge.

Cross-scene Training Setting. We apply CrossNet, STAM,
DeepBS, CascadeCNN, and FgSegNet trained on CDNet2014
as a single model to test without any additional training phase
on the two cross-scene datasets. The background model GMM,
CPB, SU-CPB, and SuBSENSE are trained in specific scenes
on the two datasets with their default experiment settings. The
semantic segmentation models PSPNet and DeepLabV3+ are
trained on the semantic segmentation dataset ADE20K.

Results on LIMU.
On LIMU, from Table III, CrossNet-HOFAM performs

better on two subsets than the other models. On the subset of
CameraParameter, CrossNet ranks second with an F-Measure

of 0.7979, compared with PSPNet with the highest F-Measure
of 0.8656. Overall, CrossNet gains the best performance of F-
measure 0.7981 while SU-CPB ranks second with 0.7789, and
PSPNet ranks third with 0.7506. We illustrate the results of
the proposed CrossNet-HOFAM, STAM, SU-CPB, PSPNet,
and DeepLabV3+ in Figure 7.

Results on LASIESTA.
On LASIESTA, from Table IV as on LIMU, CrossNet

is compared with the approaches presented above. Two in-
door and two outdoor subsets, i.e., outdoor Moving camera
(O MC), outdoor Cloudy conditions (O CL), indoor Oc-
clusions (I OC), and indoor Moving camera (I MC), are
shown. Overall, CrossNet gains the best performance of F-
measure 0.8072, while STAM ranks second with 0.6807. On
the outdoor subsets, CrossNet gets a much higher F-measure
than PSPNet and DeepLabV3+. Significantly, some scenes in
LASIESTA may change slowly, which is why the methods
using background subtraction with specific-scene perform less
satisfactorily in some test scenes. This also reflects the ef-
fectiveness and robustness of the proposed method. Figure 8
demonstrates the above observation.
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Video Frame STAMHOFAM PSPNet DeepLabV3+SU-CPB

Fig. 8: Result comparisons of different models on cross-scene dataset LASIESTA. Each column: image frame, segmentation
results of the proposed CrossNet-HOFAM, SU-CPB, STAM, PSPNet and DeepLabV3+, from left to right. Green: False Positive,
Red: False Negative.

TABLE IV: F-measure of different methods on LASIESTA [63] dataset.

Method O MC O CL I OC I MC Overall Model Types
CrossNet-HOFAM .6919 .8602 .8456 .7895 .8072

CrossNetnoCmDFF .5518 .6364 .7067 .5683 .6148
CrossNetnoHOP .5656 .6637 .6883 .6030 .6312 Cross-scene

DeepBS [35] .7020 .7673 .6758 .5911 .6774 training
STAM [59] .6365 .7624 .7362 .6735 .6807 on CDnet2014

Cascade CNN [5] .1028 .1414 .1155 .1799 .1288
FgSegNet [4] .1539 .1687 .4923 .4306 .2447

GMM [6] .3125 .8027 .7746 .2513 .4527
CPB [7] .2910 .8407 .8095 .0641 .4304 Specific-scene

SU-CPB [23] .2803 .8430 .7823 .0722 .4412 background subtraction
SuBSENSE [8] .3029 .8327 .7412 .1164 .4425

PSPNet [37] .1652 .3533 .9281 .7086 .3723 Semantic
DeepLabV3+ [36] .1675 .2319 .8294 .8276 .3395 training on ADE20k

E. Precision-Recall Analysis of HOFAM

The Precision-Recall (PR) comparisons of the proposed
background subtraction framework HOFAM with other mod-
els are shown in Figure 9. We compare the results in
method trained dataset (CDNet2014 [61]) and two cross-
scene datasets (LIMU [62] and LASIESTA [63]). We can
observe that the proposed HOFAM can achieve a better result
and performs more stably than the other models in different
datasets. Meanwhile, compared with those performances on
CDNet2014, although all the supervised methods (HOFAM,
STAM, DeepBS, CascadeCNN, and FgSegNet trained on CD-
net2014) have inevitable performance degradation on cross-
scene datasets LIMU and LASIESTA, the proposed HOFAM
has more stable performance, which indicates that our model
has better cross-scene generalization.

F. Test Speed and Model Size

The test speed of CrossNet is 5.33 fps for the image size of
256 by 256 on two GTX2080TI with 32 GB RAM, i9 CPU,
and Ubuntu 16.04 LTS operating system. The entire network
uses Tensorflow 1.13 version. The model size checkpoint of
CrossNet is 1.6 GB. Note that because the structure of different
background subtraction models is very different, including
supervised and unsupervised methods, cross-scenario, and
specific scenario methods, it is unfair to compare the scale
of parameters between different models. In general, the model
size of the proposed method is equivalent to that of STAM
method. In addition, if the optical flow extraction network
is considered, the model size will vary according to the
difference of the primary optical flow generation model.
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Fig. 9: Precision-Recall comparison of different models on
CDNet2014 [61], LIMU [62] and LASIESTA [63].

G. Impact of Basic Optical Flow Generation Models

Without additional training, we infer basic optical flow
directly in the background subtraction datasets. To just verify

the impact of basic optical flow generation performance on
3D-HOP, we also prepared samples generated by the latest
optical flow methods, including KPA [55], Gmflow [56],
equilibrium [57], and the classical LK [40] for performance
comparison. The performance comparison of various optical
flows is detailed in Table V. We can observe that two of
CrossNet integrated three SOTA optical flow methods exceed
the performance of the current CrossNet integrated SelfFlow.
This also confirms the importance of basic optical flow gener-
ation quality. We still prefer to use the self-supervised optical
flow generation method Selflow [49], mainly considering its
potential versatility and flexibility to build a full unsupervised
background subtraction framework in our future work.

TABLE V: The average performance of F-measure on CD-
Net2014 using different basic optical flow generation models.

KPA [55] Gm [56] equilibrium [57] Sel [49] LK [40]
.9839 .9738 .9803 .9776 .9295

V. CONCLUSION AND FUTURE WORK

We have proposed a method to realize cross-scene back-
ground subtraction. Compared to the existing state-of-the-
art cross-scene deep CNNs, specific-scene deep CNNs, tradi-
tional background subtraction methods, and modern semantic
segmentation models on CDNet2014, LIMU and LASIESTA
benchmarks, CrossNet has shown promising generalization to
discriminate the scene-independent motion patterns without
any additional training for a new scene.

The limitation of this work is that we fixed the interval
settings of 3D-HOP for efficient training. Since the model
has to be retrained with optical flows at different intervals,
we intend to develop a more flexible way to use an adaptive
interval of 3D-HOP. In future work, realizing a complete self-
supervised learning manner could extend the flexibility further.
In addition, applying the proposed module to other computer
vision tasks is also a potential direction.

REFERENCES

[1] W. Hu, X. Li, X. Zhang, X. Shi, S. Maybank, and Z. Zhang, “Incremental
tensor subspace learning and its applications to foreground segmentation
and tracking.” in International Journal of Computer Vision (IJCV), 2011.

[2] L. Itti, “Automatic foveation for video compression using a neurobi-
ological model of visual attention,” in IEEE Transactions on Image
Processing (TIP), 2004.

[3] X. Chen, C. Fu, Y. Zhao, F. Zheng, J. Song, R. Ji, and
Y. Yang, “Salience-guided cascaded suppression network for person re-
identification,” in CVPR, 2020.

[4] L. A. Lim and H. Y. Keles., “Foreground segmentation using convo-
lutional neural networks for multiscale feature encoding,” in Pattern
Recognition (PR), 2018.

[5] Y. Wang, Z. Luo, and P. Jodoin, “Interactive deep learning method for
segmenting moving objects.” in Pattern Recognition (PR), 2017.

[6] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models
for real-time tracking.” in CVPR, 1999.

[7] W. Zhou, K. Shun’ichi, H. Manabu, S. Yutaka, and D. Liang, “Fore-
ground detection based on co-occurrence background model with hy-
pothesis on degradation modification in dynamic scenes,” in Signal
Processing (SP), 2019.

[8] P. L. St-Charles, G. A. Bilodeau, and R. Bergevin, “Subsense: A
universal change detection method with local adaptive sensitivity,” in
IEEE Transactions on Image Processing (TIP), 2014.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2023.3266608

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on October 08,2023 at 03:19:56 UTC from IEEE Xplore.  Restrictions apply. 



SUBMISSION OF IEEE TRANSACTIONS ON MULTIMEDIA 13

[9] M. Wang and W. Deng, “Deep visual domain adaptation: A survey,” in
Neurocomputing, 2018.

[10] T. Kim, M. Jeong, S. Kim, S. Choi, and C. Kim, “Diversify and match: A
domain adaptive representation learning paradigm for object detection,”
in CVPR, 2019.

[11] Y. C. Chen, Y. Y. Lin, M. H. Yang, and J. B. Huang, “Crdoco: Pixel-level
domain transfer with cross-domain consistency,” in CVPR, 2020.

[12] Z. Li and D. Hoiem, “Learning without forgetting,” in IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 2018.

[13] L. Wang and K. J. Yoon, “Knowledge distillation and student-teacher
learning for visual intelligence: A review and new outlooks,” in IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
2021.

[14] X. Yan, Z. Chen, A. Xu, X. Wang, X. Liang, and L. Lin, “Meta r-cnn :
Towards general solver for instance-level low-shot learning,” in CVPR,
2020.

[15] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for
semantic urban scene understanding,” in CVPR, 2016.

[16] A. Zlateski, R. Jaroensri, P. Sharma, and F. Durand, “On the importance
of label quality for semantic segmentation,” in CVPR, 2018.

[17] J. Huang, L. Qu, R. Jia, and B. Zhao, “O2u-net: A simple noisy label
detection approach for deep neural networks,” in ICCV, 2019.

[18] D. Tanaka, D. Ikami, T. Yamasaki, and K. Aizawa, “Joint optimization
framework for learning with noisy labels,” in CVPR, 2018.

[19] D. Liang, S. Kaneko, M. Hashimoto, K. Iwata, X. Zhao, and Y. Satoh,
“Co-occurrence-based adaptive background model for robust object
detection,” in AVSS, 2013.

[20] D. Liang, S. Kaneko, M. Hashimoto, K. Iwata, and X. Zhao, “Co-
occurrence probability-based pixel pairs background model for robust
object detection in dynamic scenes.” in Pattern Recognition (PR), 2015.

[21] D. Liang, S. Kaneko, H. Sun, and B. Kang, “Adaptive local spatial mod-
eling for online change detection under abrupt dynamic background.” in
ICIP, 2018.

[22] D. Liang and X. Liu, “Coarse-to-fine foreground segmentation based
on co-occurrence pixel-block and spatio-temporal attention model,” in
ICPR, 2021.

[23] D. Liang, B. Kang, X. Liu, P. Gao, X. Tan, and S. Kaneko, “Cross-
scene foreground segmentation with supervised and unsupervised model
communication,” in Pattern Recognition (PR), 2021.

[24] D. Liang, Z. Wei, H. Sun, and H. Zhou, “Robust cross-scene foreground
segmentation in surveillance video,” in ICME, 2021.

[25] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder: Real-
time tracking of the human body.” in IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 1997.

[26] A. Elgammal, R. Duraiswami, D. Harwood, and L. Davis, “Background
and foreground modeling using nonparametric kernel density estimation
for visual surveillance,” in Proceedings of the IEEE, 2002.

[27] O. Barnich and M. Van Droogenbroeck, “Vibe: A universal background
subtraction algorithm for video sequences,” in IEEE Transactions on
Image Processing (TIP), 2011.

[28] S. Liao, G. Zhao, V. Kellokumpu, M. Pietikainen, and S. Li, “Mod-
eling pixel process with scale invariant local patterns for background
subtraction in complex scenes.” in CVPR, 2010.

[29] Y. Sheikh and M. Shah, “Bayesian modeling of dynamic scenes for
object detection.” in IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI)), 2005.

[30] T. Huynh-The, O. Banos, S. Lee, B. H. Kang, E. S. Kim, and T. Le-Tien,
“Nic: A robust background extraction algorithm for foreground detection
in dynamic scenes,” in IEEE Transactions on Circuits and Systems for
Video Technology (TCSVT), 2016.

[31] M. Braham and M. Van Droogenbroeck, “Deep background subtraction
with scene-specific convolutional neural networks,” in SMC, 2016.

[32] Y. Wang, L. Zhu, and Z. Yu, “Foreground detection for infrared videos
with multiscale 3-d fully convolutional network.” in IEEE Geoscience
and Remote Sensing Letters (GRSL), 2018.

[33] P. W. Patil and S. Murala, “Msfgnet: A novel compact end-to-end
deep network for moving object detection.” in IEEE Transactions on
Intelligent Transportation Systems, 2018.
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