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Abstract— Remote sensing image classification refers to the
task that using algorithms to categorize satellite or aerial
imagery into different land cover types. In the real world, long-
tailed data distribution is commonly present in remote sensing
image classification tasks, causing models to excessively favor
sufficient head classes during training and degrading prediction
accuracy for scarce tail classes. Although existing methods such
as resampling and reweighting can alleviate the issue of data
imbalance to a certain extent, they struggle to sufficiently enhance
the diversity of tail class samples. In recent years, some works
have begun to use diffusion models to generate diverse samples
to balance the class distribution. However, these approaches
often overlook the distribution inconsistency between generated
and real images, which will hinder the improvement of model
performance. To tackle these challenges, this article proposes
a novel diffusion-noise-based augmentation (DONA) method
with a two-stage training process. Before training, our specially
designed conditional prompts are used together with the original
training set to guide the diffusion model in image generation.
Furthermore, we propose two strategies to effectively leverage the
generated images, which are applied, respectively, at the end of
the first training stage and during the second training stage. First,
we design DiffCam-Mix to fuse the background of the generated
data with the foreground of the original data, preserving the
essential information of the original real images while incorpo-
rating the diversity of the generated ones. Second, we use cosine
similarity to minimize the differences between the mixed data
and their corresponding original data, further calibrating the
distribution of different samples. Extensive experiments on three
public datasets—SIRI-WHU-LT, PatternNet-LT, and RSI-CB256-
LT—demonstrate the effectiveness of the proposed method.

Index Terms— Diffusion model, long-tailed distribution, remote
sensing image classification, visual recognition.

I. INTRODUCTION

REMOTE sensing image classification is mainly used to
identify and classify land cover types in images obtained

from satellites or aerial photography. It has significant implica-
tions for fields, such as environmental monitoring [1], [2], [3],
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urban planning [4], [5], [6], [7], [8], agriculture [9], and
other areas [10], [11], [12]. In recent years, deep convolu-
tional neural networks have been widely applied to remote
sensing image classification tasks [13], [14], [15], [16], [17].
These networks are capable of automatically learning and
extracting complex features of remote sensing images, thereby
greatly improving the performance of image classification
tasks.

Although traditional convolutional neural networks have
shown great superiority in remote sensing image classification,
the distribution of remote sensing images in the real world
often shows imbalance, i.e., the long-tailed distribution of
data: a few classes have a large number of samples, namely,
the head class; while the vast majority of classes have a
small number of samples, namely, the tail class. Fig. 1
illustrates this data distribution. In this case, traditional deep
convolutional neural networks may learn biased representa-
tions toward the head class, resulting in poor recognition of
the tail class. Therefore, how to improve the performance
of long-tailed remote sensing image classification tasks has
gradually attracted widespread attention. There are three main
solutions to address long-tailed problems: class rebalancing,
information augmentation, and module improvement [18].
Class rebalancing mainly includes methods, such as resam-
pling [19], [20] and reweighting [21], [22], which aims to
balance the feature space and class boundaries between the
head class and the tail class. Although these methods can
enhance the performance of the model to some extent, they
do not fundamentally address the issue of data scarcity, par-
ticularly when the data in the tail class are extremely limited.
Information augmentation mainly includes methods, such as
transfer learning [23], [24] and data augmentation [25], [26],
which seeks to improve the model performance by introduc-
ing additional information. These methods introduce limited
additional information and thus have limited contribution to
enhancing the model. Module improvement mainly includes
decoupled training [27], [28], ensemble learning [29], [30],
and other methods [31], [32], [33], which strives to improve
the performance of feature extraction and classifiers. Such
methods have certain advantages in improving feature extrac-
tion and classifier performance, but at the same time, they also
increase the complexity of the model.

Recently, a few works dedicated to generating augmented
samples by traditional data augmentation [34], [35], [36].
However, these methods experience obstacles in generating
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Fig. 1. Long-tailed distribution of data in the real world. The data can be
divided into three parts according to the increasing class index: head class,
middle class, and tail class.

diverse and detailed-rich images, which impacts the gener-
alization of models. Traditional data augmentation methods
primarily expand datasets by applying geometric transforma-
tions, color adjustments, noise addition, and other operations
to the original images. Although these methods increase
sample diversity to a certain extent, the additional infor-
mation they provide is mainly concentrated on superficial
changes in image features, lacking the extension of deeper
information. Furthermore, when dealing with extremely long-
tailed distributions, these methods struggle to significantly
enhance the diversity and quality of samples in tail classes.
Reference [37] as a prominent generative model has shown
outstanding performance in image generation tasks in recent
years. Currently, some researchers have attempted to use
images generated by diffusion models directly for data aug-
mentation [38], [39]. Nonetheless, when faced with remote
sensing data, these approaches exhibit limited efficiency,
which might be attributed to the distribution shift between
generated images and real images. Therefore, we resort to
both utilizing diffusion models to generate new samples, and
considering combining these new samples with the original
ones to improve their generalization ability.

An effective strategy is to mix the generated images with the
original images and use the resulting mixed samples to train
the model. This strategy can not only leverage the diversity
of generated samples to expand the feature space of the tail
class but also introduce the information of the original real
images to reduce the risk of using poorly generated images
to affect the overall training. Classic data mixing methods
include Mixup [40], CutMix [40], and GuidedMixup [41].
These methods usually use interpolation to mix single or
multiple images, which can enrich the sample space of the tail
class to a certain extent. However, at the same time, it also
brings about the omission of salient regions of the image and
label ambiguity [42].

To address the above challenges, we propose a diffusion-
noise-based augmentation (DONA) method that both effec-
tively expands the diversity of the original dataset and avoids
biases caused by training the model on generated data. First,

we input the specially designed conditional prompts and the
original images into a conditional diffusion model to generate
images and filter them by calculating cosine similarity based
on the CLIP model. The prompts incorporate various weather
conditions and seasons, significantly enhancing data diversity
and aligning with real-world conditions. However, training
models on synthetic images often overemphasize spurious
qualities and biases caused by imperfect generative models.
Therefore, we design DiffCam-Mix to counter these chal-
lenges. Inspired by the work on feature visualization [43],
we use class activation maps (CAMs) to extract salient regions
of images, i.e., calculate background masks and foreground
masks after the first stage of training. The background mask is
used to extract the nonkey part (background) of the generated
image, and the foreground mask is used to extract the key
part (foreground) of the original image corresponding to the
generated image. Finally, the foreground of the original image
and the background of the generated image are mixed to obtain
mixed data for the second stage of training. In this way, the
crucial information of the original image can be retained to
solve the deviation problem of directly using the generated
data. In addition, we introduce SimSiam contrastive learning,
which maximizes the cosine similarity between the mixed
data and the corresponding original data in the feature space,
bringing them closer together and further correcting this bias.

In general, our main contributions are as follows.
1) We introduce a novel DONA method for long-tailed

remote sensing image classification. This method lever-
ages the diffusion model controlled by specialized
prompts to generate new images and employs the CLIP
model to filter low-quality generated samples. It can
generate diverse and high-quality samples to expand the
original dataset and is suitable for long-tailed remote
sensing image classification tasks.

2) We propose two strategies to effectively utilize generated
images. The first strategy is our designed DiffCam-Mix
module to generate mixed data for two-stage train-
ing. The second strategy is to maximize the similarity
between the mixed samples and the corresponding orig-
inal samples. These strategies can effectively reduce the
bias caused by directly using generated images to train
the model and improve the overall performance.

3) We conducted extensive experiments on three long-tailed
remote sensing datasets and found that our method
achieved significant improvements compared with other
methods, demonstrating the effectiveness and superiority
of our proposed approach.

II. RELATED WORKS

In this section, we will mainly introduce the related work in
the following four parts: remote sensing image classification,
diffusion models for data augmentation, data mixing, and
contrastive learning.

A. Remote Sensing Image Classification

Data scarcity and long-tailed distributions are common
issues in the real world, especially in remote sensing image
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classification. This is because different regions have varying
landforms and land use patterns, leading to certain classes
frequently appearing in specific areas while being rare in
others. This has resulted in two distinct tasks: few-shot remote
sensing image classification and long-tailed remote sensing
image classification. Regarding few-shot remote sensing image
classification, Liu et al. [44] proposed a multiform ensemble
self-supervised learning (MES2L) framework, which effec-
tively enhances the performance and efficiency of few-shot
remote sensing scene classification through global–local
contrastive learning and ensemble enhancement methods.
Li et al. [45] introduced a collaborative self-supervised evo-
lution framework (CSENet), which automatically optimizes
self-supervised task weights to resolve task conflicts in
few-shot remote sensing scene classification, thereby improv-
ing classification performance. For the long-tailed remote
sensing image classification task, various methods have been
proposed from different perspectives. Zhao et al. [46] proposed
a novel hierarchical distillation framework (HDF) to solve the
problem of long-tailed object recognition in aerial images.
Miao et al. [47] proposed a multigranularity decoupling
network (MGDNet), which consists of three parts: a multi-
granularity complementary feature representation (MGCFR)
method, a class-imbalanced pseudolabel selection (CIPS)
approach, and the diversity component feature (DCF) loss
function. MGCFR and CIPS are used for multigranularity fea-
ture learning and high-confidence pseudolabel measurement,
and DCF loss can make local features more discriminative. Liu
et al. [48] proposed a method based on loss reweighting, using
the cumulative classification score instead of the number of
samples in each class to construct the class weight to improve
the accuracy of the tail class. Bai et al. [49] used energy-based
discriminators (EDors) to divide the data into head and tail
classes, and designed different experts for classification of the
head and tail classes. Xie et al. [50] introduced dynamic dis-
sociation (DD) and a multiobjective optimization framework
(MOOF) to separate feature learning and classifier learning
into two stages, while using learnable feature centroids (LFCs)
and masked world knowledge learning (WKL) to improve
the learned features. Although these methods can enhance the
ability to handle the imbalance between head and tail classes,
they suffer from high complexity, poor adaptability to different
scenarios, and lack of effective improvement for rare classes.

B. Diffusion Models for Data Augmentation

The diffusion model was first proposed by Sohl-Dickstein
et al. [51], but it did not attract much attention at the time.
It was not until the proposal of DDPM [37] in 2020 that
many subsequent image generation works began to turn to
research on diffusion models. In recent years, many studies
have begun to focus on how to use diffusion models for data
augmentation. Trabucco et al. [38] explored how to effec-
tively augment data by using text-to-image diffusion models
(DA-Fusion) to generate images. Azizi et al. [39] demonstrated
that using samples generated by fine-tuned diffusion models
for training can significantly improve classification accuracy
on ImageNet. Feng et al. [52] proposed a new test-time prompt
tuning (TPT) method, called DiffTPT, which leverages pre-
trained diffusion models to generate diverse and informative

augmented data. Islam et al. [42] proposed DIFFUSEMIX,
a method that utilizes diffusion models to reshape training
images and blends generated images, real images, and fractal
images for better augmentation. These methods do not take
into account the contextual relationships among different land
cover types in remote sensing images, making them unsuitable
for remote sensing image classification tasks that require a
precise understanding of spatial structures.

C. Data Mixing

Data mixing is a classic data augmentation method that
can significantly enhance the robustness and generalization
capability of deep convolutional neural networks. A well-
known approach is Mixup [40], which linearly interpolates
pairs of samples and their labels to create new synthetic
samples. CutMix [53] improves upon this by cutting and
pasting regions from one image to another while adjusting
the corresponding labels. Manifold Mixup [54] extends the
concept of Mixup to the hidden layers of neural networks,
performing linear interpolation at intermediate layers to pro-
duce richer feature representations. GuidedMixup [41], based
on saliency maps, controls the mixing ratio of each pixel by
smoothly interpolating between paired images, thereby better
preserving salient regions. Recently, Zheng et al. [55] intro-
duced a data mixing method called CamMix, which achieves
stricter class region localization to minimize redundant areas.
Data mixing can increase the number of training samples,
helping to alleviate the issue of data scarcity in long-tailed
distribution. Compared with the above methods, our approach
can integrate key information from both original and generated
images, preserving the critical semantics of the original images
as well as the diversity obtained from the diffusion model.

D. Contrastive Learning

Contrastive learning includes self-supervised contrastive
learning and supervised contrastive learning. This method
trains by bringing similar samples (positive pairs) closer
together and pushing dissimilar samples (negative pairs) fur-
ther apart. Self-supervised contrastive learning does not rely
on label information to construct positive and negative pairs,
whereas supervised contrastive learning does the opposite.
Common self-supervised contrastive learning methods include
SimCLR, MoCo, BYOL, and SimSiam. SimCLR [56] gen-
erates positive pairs from different views by using data
augmentation and trains the model using a nonlinear pro-
jection head and InfoNCE loss. MoCo [57] introduces a
momentum-updated encoder queue to store feature represen-
tations of negative samples, making contrastive learning more
effective on large-scale datasets. BYOL [58] relies only on
positive pairs for self-supervised learning of representations,
avoiding the negative sample selection issues common in
contrastive learning. SimSiam [59] achieves effective repre-
sentation learning through a simple Siamese network structure
and a design of predictor head. In our method, we use self-
supervised contrastive learning to calibrate the distribution
in the feature space, reducing the inconsistency in sample
distribution.
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Fig. 2. Framework of our method. Before the model starts training, the data generative module generates new data for subsequent operations. The model
training process is divided into two stages. Stage I uses the original data to train the basic feature extractor and classifier. At the end of Stage I, the DiffCam-Mix
module is applied to generate mixed data, which will be used together with the original data for Stage II training. During Stage II training, we use the cosine
similarity to pull the distance between the mixed data and the corresponding original data in the feature space.

III. METHOD

A. Preliminaries

In this section, we will introduce the background knowledge
of diffusion models and self-supervised contrastive learning.

1) Diffusion Models: The diffusion model works by cor-
rupting the training data by continuously adding Gaussian
noise in the forward diffusion process and then learn to recover
the data by reversing this process (i.e., the reverse diffusion
process). For a given real image sample x0 ∼ q(x), the forward
process adds Gaussian noise to it through T accumulations.
Finally, we get T noise images x1, x2, . . . , xT . The size of
each step is controlled by a series of hyperparameters {γt ∈

(0, 1)}T
t=1 of the Gaussian distribution variance. Since each

moment t in the forward process is only related to the moment
t − 1, it can also be regarded as a Markov process

q(xt | xt−1) = N
(

xt ;
√

1 − γt xt−1, γt I
)

(1)

q(x1:T | x0) =

T∏
t=1

q(xt | xt−1). (2)

In this process, as t increases, xt becomes closer and closer to
pure noise. When T → ∞, xT is completely Gaussian noise.

Contrary to the forward diffusion process, the reverse dif-
fusion process is the denoising process. If we can reverse the
above process and sample from q(xt−1 | xt ), we can restore the
original image distribution x0 ∼ q(x) from the Gaussian noise
xT ∼ N (0, I). However, we cannot simply infer q(xt−1 | xt ),
so we need to use a deep learning model to predict such

an inverse distribution. The current method mainly uses the
U-Net + attention structure.

2) Self-Supervised Contrastive Learning: Self-supervised
contrastive learning learns useful feature representations by
maximizing the similarity between positive pairs and minimiz-
ing the similarity between negative pairs. It usually uses cosine
similarity to evaluate the similarity between samples. In a
mini-batch, the number of samples is N . Assuming that there
is a sample xi and its positive sample x p (different augmented
view of the same image), and other negative samples xn (from
different samples), the common self-supervised contrastive
learning loss is defined as follows:

L = −

2N∑
i=1

log
exp
(
sim
(
zi , z p

)
/τ
)∑2N−1

n=1 exp(sim(zi , zn)/τ)
(3)

where zi , z p, and zn are the feature representations of samples
xi , x p, and xn , sim(zi , z p) is the cosine similarity between zi

and z p, and τ is the temperature parameter.
As self-supervised contrastive learning, the core idea of

SimSiam is to learn representations through a pair of identical
networks, where the goal of the model is to maximize the
similarity between two different augmented views of the same
input image. Unlike other self-supervised contrastive learning
methods such as SimCLR or MoCo, SimSiam does not require
a large number of negative sample pairs or batch sizes.

B. Overview of the Proposed Method

The overall framework of our method is shown in Fig. 2,
which mainly includes four parts: data generative module,

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on June 17,2025 at 14:48:19 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: DONA FOR LONG-TAILED REMOTE SENSING IMAGE CLASSIFICATION 5626114

Stage I training, DiffCam-Mix module, and Stage II training.
Before the feature extractor and classifier start training, the
original images and the corresponding prompts are first input
into the generative model InstructPix2Pix [60] to generate new
images. Considering that the generated images may be of low
quality, the CLIP model is subsequently used to filter them in
order to improve the performance.

During the training phase, we used a two-stage training
method. In the first stage, the original images were first
class-balanced resampled for training the feature extractor and
classifier. When the first stage of training is completed, the
network is now able to basically extract the features of the
images, so that they can be effectively identified and classified.
After that, the DiffCam-Mix module uses the class activation
mapping method Grad-CAM++ to extract the key parts of
the image and generate the foreground mask and background
mask, respectively. The mask information are used to mix the
foreground of the original image and the background of the
generated image to generate new mixed data.

In the second stage of training, the original data and the
mixed data processed by the DiffCam-Mix module are input
into the network, and the network is fine-tuned to further
improve the generalization ability. At the same time, SimSiam
contrastive learning is used to minimize the negative cosine
similarity of the mixed data and its corresponding original
data. The purpose is to reduce the distance between the
mixed data and the original data in the feature space, thereby
calibrating the distribution of the mixed data and further
reducing the negative effects of using the generated data for
training the model.

C. Data Generative Module

The data generative module uses the pretrained diffusion
model InstructPix2Pix as the generation model, which can
achieve refined image generation by combining text instruc-
tions and diffusion processes. InstructPix2Pix incorporates the
knowledge of two large pretrained models during training: a
language model (GPT-3) and a text-to-image model (stable
diffusion), enabling quick image editing guided by language
instructions. We designed a prompt set P = { Snowy, Sunset,
Autumn, Rainy, Winter, Sunny, Summer, Cloudy, Spring
, Foggy} to guide the diffusion model to generate images of
different styles. These prompts are related to the weather and
seasons and will not cause fundamental changes in the seman-
tic information and spatial structure of the original image,
but can enrich the diversity of the original data to a certain
extent. We define the prompt set as P = {P1, P2, . . . , Pm},
and the original image set is defined as Io. The original
images and the prompts will be input into the diffusion model
together. For each input image xi ∈ Io, the diffusion model
generates an image x ′

ij of the corresponding style based on
the prompt Pj ∈ P . xi is the original image corresponding to
the generated image x ′

ij. Repeat the above generation process,
and finally, we get a generated image set Ig . The labels of
the generated samples are consistent with the labels of their
corresponding original samples.

There are often some low-quality samples in the generated
images. These low-quality samples may include blurriness,

unnatural textures, or other visual anomalies that deviate from
the characteristics of real images. If they are directly used
for subsequent training, the performance of the model may
be damaged. Therefore, we use the pretrained CLIP model to
filter the generated image set Ig . The core idea of CLIP is
to train an image encoder and a text encoder via contrastive
learning so that related image and text pairs are close to
each other in the feature space. Given a dataset containing
C classes, define the maximum number of samples for each
class as K , the number of original samples of class y (y ∈

[0, C − 1]) as Ny , and the template Ty of class y as “a
photograph of the class [y].” [y] here represents the name
of the class y. Using CLIP’s image encoder and text encoder,
we obtain the image embedding of the generated image x ′

ij and
the text embedding of its corresponding class template Ty , and
then calculate the cosine similarity score Sx ′

ij
between them

Sx ′
ij
= Encoder image

(
x ′

ij

)
· Encoder text

(
Ty
)
. (4)

For class y, we select K − Ny samples with the highest
similarity score and retain them as high-quality generated
images, filtering the remaining samples. Finally, we get the
filtered high-quality generated image set I ′

g .

D. Stage I Training

The training of the model is mainly divided into two stages.
The first stage is the first n epochs, in which the original data
are used for feature extractor and classifier training through
the class-balanced sampler. The loss function Lo applied in
this stage is cross-entropy loss. The resulting trained network
is then utilized for subsequent CAM calculations.

E. DiffCam-Mix Module

Using Stage I trained feature extractor and classifier, we per-
form data mixing operations on the generated data and the
corresponding original data. Class activation mapping is a
visualization technique used to identify image regions that are
important for class-specific judgment in convolutional neural
networks. Our DiffCam-Mix module uses Grad-CAM++ to
extract the key part (foreground) of the original image and mix
it with the nonkey part (background) of the generated image,
which can preserve both the key information from the original
data and the diversity information from the generated data.
Compared with other class activation mapping techniques,
such as CAM [61] and Grad-CAM [62], Grad-CAM++ can
capture multiple relevant areas in the image.

Specifically, we first calculate the CAM based on the feature
activation map and weight information and adjust it to generate
foreground masks and background masks. For each image,
after the forward and backward propagation, we obtain the
gradient of the target class c with respect to the feature map,
denoted by (∂Y c/∂ Ak), where Y c is the output score of the
target class c and Ak is the activation feature map of the target
layer. For each activation map Ak , the gradient weights αkc

mn is
calculated as follows:

αkc
mn =

∂2Y c

(∂ Ak
mn)

2

2 ∂2Y c

(∂ Ak
mn)

2 +
∑

a
∑

b Ak
ab

{
∂3Y c

(∂ Ak
mn)

3

} (5)
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where (m, n) and (a, b) are the same iterators over the
entire activation map Ak . (∂2Y c/(∂ Ak

mn)
2) and (∂3Y c/(∂ Ak

mn)
3)

represent the second-order partial derivative and the third-order
partial derivative. For the convenience of calculation, in prac-
tice, the square and cube of the first-order gradient are used to
replace the second-order gradient and the third-order gradient,
respectively. Multiply αkc

mn by the gradient after the Rectified
Linear Unit (ReLU) activation and sum it over all positions
(m, n) to get the final weight wc

k

wc
k =

∑
m

∑
n

αkc
mn · ReLU

(
∂Y c

∂ Ak
mn

)
. (6)

The calculated weights are multiplied and summed with the
feature map, and then passed through the ReLU layer to obtain
CAM

CAM = ReLU

(∑
k

wc
k Ak

)
. (7)

Then, normalization and resizing are applied for further
processing to match the size of the input image. In this way,
we get the final CAM CAMresized. According to the following
formula:

M = (1 − CAMresized)
2. (8)

We can get the background mask of each generated image,
where M ∈ {0, 1}

W×H . We define the mixing operation as
follows:

x̃ i = λMx′
i
⊙ x ′

i +
(
1 − λMx′

i

)
⊙ xi . (9)

The above operations can be used to obtain the mixed data.
Here, xi (xi ∈ Io) is the original image sample and x ′

i (x ′
i ∈

I ′
g) is the corresponding generated image sample. x̃ i is the

mixed data generated based on the above xi and x ′
i . λ is a

hyperparameter, ranging from 0 to 1, which is used to control
the mixing ratio of the foreground and the background. λMx ′

i

is used to calculate the background part of x ′
i , 1−λMx ′

i
is used

to calculate the foreground part of xi , and ⊙ is the elementwise
multiplication. Since our operation is performed between two
samples of the same class, the labels of the mixed data will
not be changed.

F. Stage II Training

After using the DiffCam-Mix module to obtain mixed data,
we use these samples and the original samples for the second
stage of training to fine-tune the network. At the same time,
according to the idea of SimSiam, we regard the original
sample xi and the corresponding mixed sample x̃ i as two
different augmented views and take them as a positive sample
pair. Next, these two views are processed by the encoder
network consisting of a feature extractor (from Stage I) and
a projection head, and the encoder shares weights between
the two views. In addition, a predictor head is included to
transform the output of one view and match it with the other
view. Both the projection head and the predictor head consist
of MLPs, and the predictor head is placed after the projection
head. In SimSiam, stop gradient is also a crucial mechanism
to prevent the network from collapsing into trivial solutions

during training. It ensures that only one branch (the predictor
branch) can get updated during training.

After extracting features from the sample pair, we send
them to the projection head to obtain zxi and z x̃ i

, respectively,
and send them to the predictor’s head to obtain pxi and px̃ i

,
respectively. Our goal is to minimize the negative cosine
similarity between the positive sample pair, which can be
expressed as follows:

Lsim
i = −

(
pxi

∥pxi ∥2
·

z x̃ i

∥z x̃ i
∥2

+
px̃ i

∥px̃ i
∥2

·
zxi

∥zxi ∥2

)
(10)

where ∥ · ∥2 is the l2-norm. After the above operations,
we can shorten the distance between the mixed sample and
its corresponding original sample in the feature space. The
final loss function of Stage II training process is as follows:

L total = βLsim
+ Lo

+ Lm

= β

(
1
N

N∑
i=1

Lsim
i

)
+

1
N

N∑
i=1

Lo
i +

1
N

N∑
i=1

Lm
i (11)

where β is a hyperparameter used to control the contrastive
learning loss. Lo and Lm correspond to the cross-entropy
loss of original data and mixed data training, respectively.
We believe that the original samples and mixed samples are
equally important in the second stage of training, so we assign
them the same loss weight.

IV. EXPERIMENTS

A. Datasets

Our experiments are conducted on three long-tailed datasets:
SIRI-WHU-LT, PatternNet-LT, and RSI-CB256-LT. We follow
the following formula to construct the above three original
datasets into long-tailed datasets:

Ny = Nmaxµ
y

C−1 (12)

where y is the class index, Ny is the number of samples
contained in class y, Nmax is the number of samples of the
class with the most samples, µ is the imbalance factor, and C
is the total number of classes. As the class index increases, the
number of corresponding samples decreases. Fig. 3 shows the
distribution of the three long-tailed datasets mentioned above.
The basic information of the three datasets are as follows.

1) SIRI-WHU-LT: SIRI-WHU [63] is a small remote sens-
ing dataset containing 12 scene classes and 200 images per
class. Each image is 200 × 200 pixels in size and has a spatial
resolution of 2 m. Following [48], we select 60 images from
each class as the test set and retain 140 images per class to
construct it as a long-tailed dataset with Nmax = 140. The
imbalance factors are set to 0.05, 0.02, and 0.01, respectively.
The value of K is set to 200.

2) PatternNet-LT: PatternNet [64] is a large-scale high-
resolution remote sensing dataset collected for remote sensing
image retrieval. There are 38 classes and each class has
800 images of size 256 × 256 pixels. Following [49], we select
100 images from each class as the testing set, and the remain-
ing images generate a long-tailed dataset, Nmax = 700. The
imbalance factors are set to 0.05, 0.02, and 0.01, respectively.
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Fig. 3. Data distribution of three long-tailed remote sensing datasets. (a) SIRI-WHU-LT dataset. (b) RSI-CB256-LT dataset. (c) PatternNet-LT dataset.

The value of K is set to 800. We categorize the classes with
indexes 0–12 as head classes, indexes 13–25 as middle classes,
and indexes 26–37 as tail classes.

3) RSI-CB256-LT: RSI-CB256 [65] contains 35 classes
and about 24 000 images, each with a resolution of 256 ×

256 pixels. Since its distribution is not strictly long tailed,
we select 50 samples from each class as the testing set,
and the remaining images generate a long-tailed dataset,
Nmax = 100. The imbalance factors are set to 0.1, 0.02, and
0.01, respectively. The value of K is set to 300. We categorize
the classes with indexes 0–10 as head classes, indexes 11–21
as middle classes, and indexes 22–34 as tail classes.

B. Implementation Details

For data augment, random cropping, random flipping,
brightness, and contrast adjustment are applied to all three
datasets. We train our model on three NVIDIA 3090 GPUs.
Other implementation details are as follows.

1) Implementation Details on SIRI-WHU-LT: ResNet32 is
used as the backbone. The SGD optimizer is used with a
momentum of 0.9. The weight decay is 2e−4, and the initial
learning rate is 0.1. Cosine annealing is used to adjust the
learning rate. The model is trained for a total of 200 epochs,
the first 120 epochs are the first stage of training, and the last
80 epochs are the second stage of training. For the setting
of hyperparameters, the mixing ratio λ is set to 0.5, and the
contrastive learning loss weight β is set to 1.

2) Implementation Details on PatternNet-LT: ResNet50 is
used as the backbone. We use the SGD optimizer with a
momentum of 0.9 and the weight decay of 5e−3. The ini-
tial learning rate is 0.01, and the learning rate is adjusted
using cosine annealing. The model is trained for a total of
100 epochs, with the first 40 epochs being the first stage of
training, and the second stage of training starting from the
40th epoch. In terms of the setting of hyperparameters, the
mixing ratio λ is set to 0.5, and the contrastive learning loss
weight β is set to 10.

3) Implementation Details on RSI-CB256-LT: ResNet50 is
used as the backbone. We use the SGD optimizer with a
momentum of 0.9 and a weight decay of 5e−3. The ini-
tial learning rate is 0.01, and the learning rate is adjusted
using cosine annealing. The model is trained for a total of
200 epochs, with the first 120 epochs being the first stage of
training, and the second stage of training starting at the 120th
epoch. The mixing ratio λ is set to 0.5, and the contrastive
learning loss weight β is set to 10.

C. Comparison Results

We use top-1 accuracy to evaluate the performance of
different models and use t-Distributed Stochastic Neighbor
Embedding (t-SNE) to visualize the test data. Different types
of long-tailed methods are compared, including LDAM [19],
CB [20], BBN [29], BKD [66], BCL [67], AREA [68],
CCSMLW [48], CSA [69], GLMC [70], DECOR [50],
Mixup [40], Cutmix [53], and DIFFUSEMIX [42].

1) Results on PatternNet-LT: As shown in Table I,
compared with other methods, our method improves
the performance by 0.44%–2.77%, 1.00%–8.46%, and
1.59%–11.74% when µ is 0.05, 0.02, and 0.01, respectively.
When the imbalance factor is 0.05, the sample distribution in
the dataset is relatively balanced, so all methods achieve good
results. In this case, our method achieves the best performance
in the tail class and overall, while also maintaining high accu-
racy in the head and middle classes. As the imbalance factor
decreases to 0.02, the degree of imbalance increases. Although
some methods, such as LDAM, DECOR, and Mixup, still
perform well in the head and middle classes, their performance
in the tail class significantly declines. In comparison, DONA
continues to perform well in the tail class, demonstrating
its strong ability to handle data imbalance issues. When the
imbalance rate drop to 0.01, PatternNet-LT exhibits a high
degree of imbalance. While some methods like BCL and
GLMC achieve relatively high accuracy in the tail class,
DONA performs significantly better in the head and middle
classes. Most other methods, such as LDAM, Mixup, Cutmix,
and DECOR, are biased toward the head and middle classes,
which leads to a decrease in tail class accuracy. In contrast,
even under the most extreme imbalance, DONA still demon-
strates superiority, achieving a more balanced result.

Fig. 4 displays the samples generated by our method on the
PatternNet-LT dataset, as well as the mixed samples. It can
be seen that the mixed samples obtained using our method
introduce certain transformations based on the original images,
while also retaining key semantic information without any
omissions. Fig. 5(a)–(c) shows the t-SNE of AREA, CSA,
and our method on the PatternNet dataset with the imbalance
factor of 0.01. We use points of different colors to represent
samples of different classes, and the distribution of points
shows the clustering of these classes in the feature space.
As can be seen from these figures, all three methods are able
to distinguish samples of different classes in the feature space
to a certain extent. However, compared with AREA and CSA,
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TABLE I
TOP-1 ACCURACY (%) ON PATTERNNET-LT

TABLE II
TOP-1 ACCURACY (%) ON RSI-CB256-LT

Fig. 4. Different images generated by the proposed method on the Pattern-
Net-LT dataset.

our method can generate a more compact representation, and
the separation between classes is more obvious. In summary,
on the PatternNet-LT dataset, our method has significantly
improved the classification performance, especially for the
tail class. It can greatly improve the impact caused by data
imbalance and enhance the generalization ability of the model.

2) Results on RSI-CB256-LT: As shown in Table II,
compared with other methods, our method improves
the performance by 1.25%–12.63%, 3.14%–24.50%, and
1.77%–23.69% when µ is 0.1, 0.02, and 0.01, respectively.
When the imbalance factor is 0.1, DECOR achieves the highest
accuracy in the head class, while BCL performs best in the

middle class. When the imbalance factor is 0.02, LDAM
achieves the highest accuracy in both the head and middle
classes. With the imbalance factor of 0.01, LDAM achieves
the best performance in the head class. Overall, DECOR
and LDAM tend to favor the head class as data imbalance
increases, with their tail class accuracy being significantly
lower than other compared methods. CB, GLMC, and BBN
sacrifice head class accuracy to improve performance in the
middle and tail classes, and their performance on the head
class is significantly lower than other methods. BKD, BCL,
AREA, and CSA perform well in both the head and tail
classes, but their performance in the tail class is not as
stable as our method. As the degree of imbalance in the
dataset increases, data mixing-based methods like Mixup and
Cutmix show a significant decline in accuracy in the tail class.
DIFFUSEMIX performs well, but overall, it is still inferior to
our method. In contrast, our method stands out in the tail
class, particularly when µ is smaller, showing better handling
of long-tailed distribution while maintaining high performance
in both the head and middle classes.

Fig. 5(d)–(f) shows the t-SNE of AREA, CSA and our
method on the RSI-CB256-LT dataset when µ = 0.01. Due
to the extreme imbalance of samples in the tail class, there is
a certain overlap in features between classes in both methods.
In this case, compared with AREA and CSA, the features
learned by our method are more compact within the same
class, and the distribution of sample points between classes
shows a certain degree of separation, with the overlap between
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Fig. 5. t-SNE for PatternNet-LT (µ = 0.01) and RSI-CB256-LT (µ = 0.01). (Left to right) Results of AREA, CSA, and our method on these two datasets.
(a) AREA (PatternNet-LT µ = 0.01). (b) CSA (PatternNet-LT µ = 0.01). (c) Ours (PatternNet-LT µ = 0.01). (d) AREA (RSI-CB256-LT µ = 0.01). (e) CSA
(RSI-CB256-LT µ = 0.01). (f) Ours (RSI-CB256-LT µ = 0.01).

classes also being alleviated. In a word, on the RSI-CB256-LT
dataset, our method has a stronger generalization ability under
imbalanced data distribution.

3) Results on SIRI-WHU-LT: As shown in Table III,
compared with other methods, our method improves by
4.35%–27.50%, 3.10%–36.29%, and 5.15%–30.77% when
the imbalance factor is 0.05, 0.02, and 0.01, respectively.
Most methods, such as CSA, AREA, GLMC, and Cutmix,
can achieve high accuracy on datasets with lower levels of
imbalance. However, as the degree of imbalance increases,
their performance also decreases. Mixup consistently per-
forms worse than other methods across all datasets with
three imbalance factors. DIFFUSEMIX shows relatively good
performance when the data are extremely imbalanced, but it
still lags behind DONA. Our method achieves the best results
on datasets with three imbalance factors, which fully demon-
strates its effectiveness. Even though the data is extremely
imbalanced, our method can also remain stable.

Fig. 6 shows the top-1 accuracy of CSA, AREA, and our
proposed method for samples of each class in the SIRI-WHU-
LT dataset, with imbalance factors of 0.05, 0.02, and 0.01,
respectively. Compared with CSA and AREA, our method
can better identify tail class samples under different degrees
of imbalance. When the imbalance factor is 0.01, there are
very few tail class samples in the dataset, but our method
can still achieve relatively high accuracy, which shows that
our method has strong generalization ability in the case of
long-tailed distribution. Fig. 7 displays the confusion matrix
of our DONA method trained on the SIRI-WHU-LT dataset
with an imbalance factor of 0.05. The dark diagonal ele-
ments demonstrate the model’s accurate classification for most
samples. However, some tail classes (e.g., Class 10 River

TABLE III
TOP-1 ACCURACY (%) ON SIRI-WHU-LT

and Class 11 Water) show misclassification with head classes
(e.g., Class 2 Harbor), which may be attributed to their similar
feature representations.

D. Ablation Studies

In this section, we conduct ablation experiments to demon-
strate the effectiveness of the data generative module,
DiffCam-Mix module, and contrastive learning. We conducted
experiments on PatternNet-LT (µ = 0.01) and RSI-CB256-LT
(µ = 0.1). Generated data mean that the model is trained
by using generated images without any other operations.
CLIP means that the generated images are filtered by using
CLIP. DiffCam-Mix represents the DiffCam-Mix module we
proposed, and Lsim means that contrastive learning is used
in the second stage of training. ✓ means adding the module.

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on June 17,2025 at 14:48:19 UTC from IEEE Xplore.  Restrictions apply. 



5626114 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

Fig. 6. Top-1 accuracy of CSA, AREA, and our method for each class of samples are compared on the SIRI-WHU-LT dataset when the imbalance factor
is 0.05, 0.02, and 0.01. respectively. (a) µ = 0.05. (b) µ = 0.02. (c) µ = 0.01.

Fig. 7. Confusion matrix of the model trained on the SIRI-WHU-LT dataset
with an imbalance factor of 0.05.

The first row of Tables IV and V represents the models trained
on the original dataset using only class-balanced resampling.

1) Data Generative Module: Observing the first and second
rows of Tables IV and V, we can see that after training the
model with images generated by the prompt we designed,
the overall accuracy improved by 2.12% and 4.20%, respec-
tively, especially on the RSI-CB256-LT dataset, where both
the middle and tail classes showed significant improvement.
This indicates that using images generated by the diffusion
model for data augmentation can improve the model’s per-
formance to some extent. However, for the PatternNet-LT
dataset, the accuracy improvement is mainly concentrated in
the head and middle classes, with improvements of 5.54% and
3.80%, respectively. In contrast, the accuracy of the tail class
decreased by 4.75%. This may be due to the poor quality of the
generated tail class images in the PatternNet-LT dataset. Low-
quality generated images may introduce unnecessary noise into
the model, especially when there are fewer tail class samples,
and the impact of noise becomes more significant. As a result,
it becomes more difficult for the model to learn the tail class,
leading to a decrease in accuracy. Therefore, we used the CLIP
model to filter the generated images and retain those with
higher quality. It can be observed that after introducing CLIP,
the accuracy of the tail class improved by 2.96% and 0.67% on

the two datasets, respectively. In addition to further balancing
the model’s performance, the overall accuracy increased by
0.98% and 0.97%, which proves the necessity of using CLIP
for filtering generated images.

2) DiffCam-Mix Module: There is a domain gap between
generated samples and real samples, which may aggravate the
impact of the long-tailed effect on the testing set [71]. Our
DiffCam-Mix module can further alleviate the class imbalance.
As can be seen from Tables IV and V, after applying the
DiffCam-Mix module to generate mixed data for training, the
accuracy of both datasets has improved. In comparison, the tail
class on PatternNet-LT increased by 3.45%, and the middle
and tail classes on RSI-CB256-LT increased by 0.40% and
4.00%, respectively. The overall accuracy of the two datasets
increased by 0.83% and 1.54%. From the above results, it can
be seen that DiffCam-Mix can effectively use the generated
data and the original data to balance the feature space, thereby
improving the performance of the model.

3) Contrastive Learning: After using the strategy of
SimSiam contrastive learning, the overall accuracy on the
PatternNet-LT dataset was further improved by 0.59%, and
the accuracy of the tail class was further improved by 3.03%.
The overall accuracy on the RSI-CB256-LT dataset increased
by 0.86%, the head class increased by 0.63%, the middle
class increased by 0.60%, and the tail class increased by
1.56%. The more balanced distribution of samples from each
class in the feature space led to an overall performance
boost, thereby demonstrating the effectiveness of this strategy.
Through contrastive learning, the distance between the mixed
sample and its corresponding original sample in the feature
space can be shortened, so that the model can more effectively
capture the useful information in the mixed sample and make it
closer to the distribution of real data. In addition, this method
enables the model to learn the overall representation of the
class during training, thereby improving the generalization
ability of the model.

Each part of the above modules plays a vital role, and they
work together to ensure that the model can learn a balanced
feature space during training.

E. Influence of Hyperparameters and Runtime Analysis

1) Influence of the Hyperparameter β: β is used to control
the contrastive learning loss in the second stage of training.
Following the setting of [70], its value is 1 or 10. If the value of
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TABLE IV
ABLATION STUDY ON PATTERNNET-LT (%)

TABLE V
ABLATION STUDY ON RSI-CB256-LT (%)

TABLE VI
COMPARISON OF TOP-1 ACCURACY (%) BASED ON DIFFERENT β ON THE

DATASET PATTERNNET-LT (µ = 0.01)

β is relatively large, it indicates that the model focuses more
on contrastive learning during training, which means that it
encourages the mixed data to be closer to the original data
in the feature space, making the mixed data and the original
data more similar in the feature space. If the value of β is
small, the model relies more on the standard classification
task and reduces the impact of contrastive learning. 1 and
10 represent the two different strategies and weight adjustment
methods mentioned above. When β is 1, it means that the
impact of contrastive learning on the loss function is smaller
during training, leading to a more balanced focus between
the classification task and contrastive learning. On the other
hand, when β is 10, it indicates that the weight of the
contrastive loss is significantly increased, and the model will
pay more attention to the distinction between samples in the
feature space, with the mixed data becoming closer to its
corresponding original data in the feature space. Table VI
shows the top-1 accuracy on the PatternNet-LT (µ = 0.01)
dataset when β is 1 and 10. We can see that in this case, when
β is 10, the performance of the model is more balanced. The
choice of β depends on the model’s performance on different
datasets. In most cases, we set it to 10 to effectively reduce
the discrepancy between the original data and the mixed data.

2) Influence of the Hyperparameter λ: In the DiffCam-Mix
module, λ is used to control the mixing ratio of the background
of the generated image and the foreground of its corresponding
original image, which ranges from 0 to 1. We tested the top-1

accuracy under different λ on the SIRI-WHU-LT dataset, and
the results are shown in Table VII. We can see that on the
datasets with three imbalance factors, the accuracy reaches a
peak when the value of λ is 0.5. When λ approaches 1, the
proportion of generated images is higher, and the accuracy on
the three datasets decreases. This shows that relying entirely
on generated images may reduce model performance because
the generated images cannot fully reflect the characteristics
of the original data, and excessive introduction of generated
images may bring noise to the training of the model. As λ
approaches 0.1, the proportion of original images increases,
leading to a decline in accuracy across the three datasets. This
is due to the lack of diversity in the mixed images, which
limits the ability to expand the feature space and, in turn,
restricts the model’s generalization capability. To ensure a
balanced ratio between the generated images and the original
images in the mixed data, we set the value of λ to 0.5 in
the previous experiments, which is a general and effective
setting.

3) Analysis of Running Time and Parameters: Table VIII
shows the execution time for each epoch of our method
on three long-tailed remote sensing datasets, where Stage I
represents the execution time for each epoch in the first stage,
and Stage II represents the execution time for each epoch in the
second stage. Due to differences in the size and complexity of
the datasets, the execution times vary significantly. PatternNet-
LT, with a larger number of training samples, takes more time
to train, while RSI-CB256-LT and SIRI-WHU-LT, with fewer
samples, take less time. During the model training process,
the second stage requires both original and mixed samples,
which involves loading more data; therefore, Stage II typically
takes longer than Stage I. Table IX presents the comparison
of parameter efficiency, where all methods adopt ResNet50
as the backbone network. Our method demonstrates signifi-
cantly lower parameter count (Parameters) and floating-point
operations per second (FLOPs) compared with BCL, DECOR,
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TABLE VII
COMPARISON OF TOP-1 ACCURACY (%) BASED ON DIFFERENT λ ON THE DATASET SIRI-WHU-LT

TABLE VIII
EXECUTION TIME (IN SECONDS) FOR ONE EPOCH OF TRAINING ON

THREE DIFFERENT DATASETS

TABLE IX
ANALYSIS OF PARAMETER EFFICIENCY. P DENOTES THE PARAMETER

COUNT. FLOPs REPRESENTS THE NUMBER OF
MULTIPLY-AND-ACCUMULATE OPERATIONS

and the original ResNet50, while simultaneously achieving
effective performance improvement.

V. CONCLUSION

In this article, we first analyze the long-tailed data distri-
bution problem in remote sensing image classification, and
then discuss the existing solutions and the limitations of these
methods. On this basis, we propose a DONA method. The core
idea of DONA is to fuse the key semantic information of the
original image with the diversity information of the generated
image as additional samples to expand the original dataset,
thereby solving the problem of limited tail class samples.
To avoid the problem of inconsistent sample distribution
introduced by directly using generated images to train the
model, we propose two strategies to calibrate the distribution
in the feature space through DiffCam-Mix and self-supervised
contrastive learning, respectively. DONA has shown strong
performance on three long-tailed remote sensing datasets,
proving its effectiveness. However, our method also has cer-
tain limitations. First, data generation and mixing operations
require additional overhead, and using mixed data for training
in the second stage takes more time. Second, the quality of the
generated data needs to be further ensured, especially for other
long-tailed image classification tasks, such as fine-grained
recognition, where it is crucial to ensure that the generated
images accurately capture detailed information. In the future,
we will continue to explore the application of diffusion models

in data augmentation to enhance the versatility of DONA and
design more effective methods.
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