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Figure 1. The proposed solution yields favorable results on the flare-corrupted images captured by various devices. The real and diverse

flare-corrupted images are provided in our consumer electronics test dataset. The results are produced by the deep model U-Former trained

using our solution that includes the new data synthesis pipeline and multiple light sources recovery strategy.

Abstract

When taking images against strong light sources, the re-

sulting images often contain heterogeneous flare artifacts.

These artifacts can importantly affect image visual quality

and downstream computer vision tasks. While collecting

real data pairs of flare-corrupted/flare-free images for train-

ing flare removal models is challenging, current methods

utilize the direct-add approach to synthesize data. However,

these methods do not consider automatic exposure and tone

mapping in image signal processing pipeline (ISP), lead-

ing to the limited generalization capability of deep models

training using such data. Besides, existing methods struggle

to handle multiple light sources due to the different sizes,

shapes and illuminance of various light sources. In this

paper, we propose a solution to improve the performance

of lens flare removal by revisiting the ISP and remodeling

*Corresponding author: liangdong@nuaa.edu.cn

the principle of automatic exposure in the synthesis pipeline

and design a more reliable light sources recovery strategy.

The new pipeline approaches realistic imaging by discrim-

inating the local and global illumination through convex

combination, avoiding global illumination shifting and local

over-saturation. Our strategy for recovering multiple light

sources convexly averages the input and output of the neu-

ral network based on illuminance levels, thereby avoiding

the need for a hard threshold in identifying light sources.

We also contribute a new flare removal testing dataset con-

taining the flare-corrupted images captured by ten types of

consumer electronics. The dataset facilitates the verification

of the generalization capability of flare removal methods.

Extensive experiments show that our solution can effectively

improve the performance of lens flare removal and push the

frontier toward more general situations.
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1. Introduction

Lens flare artifacts commonly appear in the forms of ha-

los, streaks, saturated blobs, and color bleeding [31]. These

artifacts can be roughly classified into two groups: scatter-

ing flare and reflective flare. Scattering flare occurs due to

dust or wears in front of the lens, while reflective flare is

caused by light reflection within the lens system. Physically,

anti-reflection coating inside the lens system can partially

suppress flare. However, in smartphone imaging with a sim-

plified lens system and easily contaminated lens surfaces,

flare is exacerbated. Lens flare not only affects the visual

quality of images but also degrades the performance of down-

stream computer vision tasks such as object detection in an

automatic driving system. Removing lens flare from an im-

age is an extremely challenging task since it is closely related

to the properties of the light sources, such as the incident

angle, location, size, intensity, and spectrum, as well as the

heterogeneous lens types.

Like other low-level computer vision tasks such as reflec-

tion removal [9, 19], low light enhancement [11, 20, 16], and

haze removal [21, 12, 15], the lack of paired training data

is the biggest obstacle in the task of flare removal. Creat-

ing large amounts of paired training data is time-consuming

and labour-intensive. To solve this issue, a recent work [31]

created a flare dataset with 2001 captured flare-only images

and 3000 simulated flare-only images. To address the is-

sue of trained models performing poorly in nighttime, a

new dataset Flare7K [6] was created specifically to remove

nighttime flares. However, these works assume that the flare-

free and flare-only images are two independent layers and

directly adds them in the RAW space. As the RAW for-

mats of both flare and scene are not available, this work

regards the inverse gamma transformed image as the RAW

image, ignoring the typical tone mapping operator (TMO)

in an image signal processing pipeline (ISP) (see Figure. 3).

Since the transformation from RAW to RGB image is ir-

reversible, directly adding the two layers may suffer from

the over-saturation issue with low contrast, as shown in Fig-

ure. 2(a). Furthermore, most consumer cameras are equipped

with auto-exposure (AE), which automatically adjusts the

aperture and shutter speed to control the amount of light.

Consequently, directly adding a flare image can brighten the

scene, which is inconsistent with AE and causes an overall

intensity distribution shift. (see Figure. 4)

In addition to the drawbacks of the existing flare synthesis

pipeline, the light source recovery problem still challenges

current flare removal methods, particularly in recovering

multiple light sources. Most networks typically remove the

light source along with the flare, as they cannot identify and

separate the light source from the flare. To alleviate this prob-

lem, recent methods [31, 6] tend to find the brightest con-

nectivity component and apply a smoothing post-processing

operation. The failure to do so may result in an unrealistic

light source appearance, as the failure case in Figure. 2(c).

Unlike the previous works that focus on data prepara-

tion in daytime [31] and nighttime [31, 6] or design specific

networks [23], we provide two key insights to improve the

performance of lens flare removal, both of which are ignored

by the previous research: (1) How to synthesize more re-

alistic flare-corrupted images to simulate the general AE

mode and takes tone mapping into consideration? (2) How

to recover one or multiple light sources naturally and avoid

the hard threshold?

To achieve that, we first revisit the ISP and remodel the

optical synthesis principle. Then we propose a solution

to generate more realistic flare-corrupted images and pre-

serve multiple light sources well in the final results. Rather

than directly adding the scene and flare, our data synthe-

sis pipeline generates flare-corrupted images by pixel-wise

convex combinations between the scene and flare image in

inverse gamma space. Our new pipeline effectively avoids

the issues of global illumination shifting and local over-

saturation in synthetic images. Unlike previous methods,

where the light sources are always affected along with the

flare, our method can recover multiple light sources well.

It convexly averages of the input and output of the neural

network based on illuminance levels and avoids the hard

threshold when identifying light sources. In addition, we

contribute a new flare removal testing dataset containing

the flare-corrupted images captured by ten types of con-

sumer electronics to supplement existing lens flare datasets.

Extensive experiments demonstrate the effectiveness and

contributions of our key designs. Our main contributions are

summarized below.

• We systematically analyze the drawbacks of exist-

ing lens flare synthesis and creatively propose a new

pipeline to generate more realistic flare-corrupted im-

ages and avoid illumination distribution shift for flare

removal.

• We solve the challenging light source preservation issue

in flare removal using an elegant strategy that can re-

cover multiple light sources with heterogeneous shapes,

illumination, and quantities.

• We contribute a new dataset that contains real flare-

corrupted images captured by diverse consumer elec-

tronics, which provides an avenue to examine the gen-

eralization performance of flare removal methods.

2. Related Work

Physical Flare Removal. The most common optical solu-

tion to avoid lens flare is to apply an anti-reflection coating

to the surface of lenses [4]. It can weaken the reflection of

light and greatly enhances the transmission in the lens sys-

tem by utilizing destructive interference. However, it cannot
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(a) Direct-add [31, 6] (b) Our synthesis pipeline (c) Recovered by [31, 6] (d) Recovered by Ours

Figure 2. Comparison of the flare-corrupted image and light source recovery in previous works and our method. Our method can synthesize

a more realistic flare-corrupted image and preserve more natural light sources.

completely reduce reflection, and particularly fails in the

case, in which the light source is extremely bright.

Computational Flare Removal. Due to the complexity

and diversity of the optical mechanisms, effective compu-

tational solutions for flare removal are rare. Traditional

methods [1, 3, 25] can be separated into two steps: flare

detection and removal. These methods detect flares based

on the strong assumptions on flares’ illuminance, shape,

and positions, and then use exemplar patches to inpaint the

region. However, these methods can only remove partial

flares as flares have various types and appearances. Current

deep learning-based de-flare methods are also scarce. Wu

et al. [31] directly added a flare image to a scene image to

synthesize a flare-corrupted image to train a neural network.

Qiao et al. [23] proposed a network trained on unpaired flare

data, composed of a light source detection module, flare

detection and removal, and generation module.

Lens Flare Dataset. The main challenge in flare removal is

the lack of paired training data. Wu et al. [31] first proposed

a semi-synthetic dataset containing 2001 captured and 3000

simulated flare images. To solve the limitations of Wu’s

dataset such as the limited lens flare type, especially in the

nighttime, Dai et al. [6] provided a synthetic dataset with

diverse flare types, named Flare7K. Flare7K offers 5,000

scattering and 2,000 reflective flare images and consists of

25 types of scattering and 10 types of reflective flares.

Computational Image Distortion. Some recent works ap-

ply computational and learning-based approaches to reflec-

tion removal [32, 18, 17], rain removal [14, 27, 26], and haze

removal [5, 7, 33, 8]. These methods attempt to decompose

an image into original and corrupted components by training

a neural network with specific training data.

3. Preliminaries

3.1. Revisiting Image Signal Processing (ISP)

Photons received by sensors are transformed from analog

signals to digital signals. The dynamic range of our ordinary

life is in the range of [0, 106] [22]; however, human visual

system (HVS) can perceive a range of [0, 1.6×104]. The

direct linear transformation can lead to image detail loss

and substantial contrast reduction. Since HVS is more sensi-

tive to contrast rather than absolute illuminance, a nonlinear

function called tone mapping operator (TMO) was designed

to map the illuminance in the domain [0,+∞) (High Dy-

namic Range (HDR)) to the output ranged in [0, 1] (Low

Dynamic Range (LDR)), which can preserve image contrast.

As shown in Figure. 3, the section in TMO that maps larger

illuminant values in HDR to 1 in LDR asymptotically is

called the Shoulder section. Before the shoulder section,

the Linear section is the most linear portion and controls the

mid-tones scale of the image. Different digital cameras use

different tone-mapping operators. When the tone mapping

operator is always inreversible and not offered, it is difficult

to recover the RAW image from the RGB image.

As shown in Figure. 3, after tone mapping, ISP applies a

gamma correction to fit HSV further. Gamma correction is

also a non-linear operation used to encode luminance values

in image display systems. It is typically defined by a simple

power-law expression. It optimizes the illuminance when

encoding an image, by taking advantage of the non-linear

manner in which humans perceive illuminance and color.

3.2. Analyzing Flare Image Synthesis with ISP

Current methods [6, 31] synthesize paired data for flare

removal based on a critical observation that lens flare is

an additive layer on the underlying image in RAW space.

Obviously, this assumption is invalid in RGB space and will

cause overflow. To this end, current methods [6, 31] regard

the gamma-inversed image of RGB image as a RAW image

and directly add a flare-free and a flare-only image in the

gamma-inversed space to synthesize a flare-corrupted image,

which can be expressed as

I = S + F +N(0, σ2), (1)
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Figure 3. The upper is a simplified image signal processing pipeline.

The lower are two tone mapping operators, Uchimura and Sigmoid

curve. Each camera has its specific tone mapping curve.

where S is a flare-free gamma-inversed image, F is a flare-

only gamma-inversed image and N(0, σ2) denotes random

Gaussian noise used to narrow domain gap.

We argue that using a gamma-inversed image as its RAW

image is unreasonable. As introduced in Sec. 3.1, the RAW

image is the first tone mapped from HDR to LDR by the

TMO. Then the LDR image is gamma-corrected to be the

final image. Adding two RGB images in RAW space needs

its TMO T and its inverse function like

I = T (T−1(S) + T−1(F )) +N(0, σ2). (2)

Since the camera-specific TMO is irreversible and unavail-

able, the current methods regard the tone mapping of scene

and flare image as linear identity mapping, and the gamma-

inversed image is treated as a RAW image. For the flare-free

scene, most pixels are in the Linear section of TMO. Treat-

ing tone mapping as linear identity mapping is reasonable.

Nevertheless, regarding the flare image, many pixels around

the light source are in the Shoulder section of TMO. Hence,

the TMO of flare images cannot be treated as linear iden-

tity mapping. Therefore, the range of both contrast and

color near the light sources in the image synthesized by this

method would be flattened, as demonstrated in Figure. 2(a).

3.3. Rethinking More Reasonable Solution

So how can we add two layer in RAW space only using

RGB image? With this question, like Brooks et al. [2], we

assume HDR domain is [0, 1] and use the smooth step TMO

T (x) = 3x2
− 2x3 for analyzing. Since pixels in the flare-

only image range from the brightest to the darkest part, we

denote pixels in the two parts in RGB space bij and dpq .

Specifically, we first focus on the brightest part when

adding a scene layer pixel sij which is in the linear section

of TMO in RAW space. Given
T−1(sij)
T−1(bij)

= ϵ1, where ϵ1 is a

small quantity. First, representing bij using T−1(bij):

T (T−1(bij)) = 3T−1(bij)
2
− 2T−1(bij)

3 (3)

≈ 3T−1(bij)
2
− 2T−1(bij)

2 (4)

= T−1(bij)
2. (5)

Because T−1(bij) tends to 1, T−1(bij)
3
≈ T−1(bij)

2. Then

representing sij using T−1(bij):

T (T−1(sij)) = T (ϵ1T
−1(bij)) (6)

= 3ϵ21T
−1(bij)

2
− 2ϵ31T

−1(bij)
3 (7)

≈ 3ϵ21T
−1(bij)

2. (8)

Since ϵ31 is an infinitesimal of a higher order than ϵ21, it can

be ignored. Now we can represent Eq. (2) using RGB image

value bij and sij :

T (T−1(bij) + T−1(sij)) (9)

=3(1 + ϵ1)
2T−1(bij)

2
− 2(1 + ϵ1)

3T−1(bij)
3 (10)

≈3(1 + ϵ1)
3T−1(bij)

2
− 2(1 + ϵ1)

3T−1(bij)
2 (11)

=(1 + 3ϵ1 + 3ϵ21)bij +
ϵ1

3
sij (12)

Here the final result lies in the range of [0, 1+3ϵ1+3ϵ21+
ϵ1
3 ].

Since 1 + 3ϵ1 + 3ϵ21 +
ϵ1
3 ≈ 1, we use it to divide the final

result and obtian

T (T−1(bij) + T−1(sij)) (13)

≈
1 + 3ϵ1 + 3ϵ21

1 + 3ϵ1 + 3ϵ21 +
ϵ1
3

bij +
ϵ1
3

1 + 3ϵ1 + 3ϵ21 +
ϵ1
3

sij (14)

:= (1− ϵ2)bij + ϵ2sij , (15)

where ϵ2 is used to denote the coefficient of the second term.

When ϵ1 tends to 0, the weight of the first term (1 − ϵ2)
tends to 1, and the weight of the second term ϵ2 tends to

0. Eq. (10) shows a daily observation that when a strong

light source appears in an image, all image details will be

severely occluded. Therefore, the weight of the scene image

is very small, and the weight of the light source tends to be

1. It is worth noting that not all scene image pixels are in

the linear section, sometimes with highlights. In this case,

when adding the two saturated pixels, it will be clipped and

tone-mapped to be 1. Eq. (17) used in our method also leads

to 1, which is consistent with the real case.

For the darkest part, pixels dpq are tend to 0, let ϵ3 =
T−1(dpq)
T−1(spq)

. First, we represent spq and dpq using T−1(spq):

T (T−1(spq)) = 3T−1(spq)
2
− 2T−1(spq)

3 (16)

T (T−1(dpq)) = 3ϵ23T
−1(spq)

2
− 2ϵ33T

−1(spq)
3 (17)

≈ 3ϵ23T
−1(spq)

2 (18)
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According to Wu et al. [31], to synthesize the flare-corrupted

image, we need to add flare image and scene image in pre-

tonemapping space and then map them to the RGB space:

T (T−1(spq) + T−1(dpq)) (19)

=3(1 + ϵ3)
2T−1(spq)

2
− 2(1 + ϵ3)

3T−1(spq)
3 (20)

≈3(1 + ϵ3)
3T−1(spq)

2
− 2(1 + ϵ3)

3T−1(spq)
3 (21)

=(1 + 3ϵ3 + 3ϵ23)spq +
ϵ3

3
dpq (22)

Divide it using 1 + 3ϵ3 + 3ϵ23 + ϵ3
3 ≈ 1 and denote the

coefficient of the second term ϵ4, we have

T (T−1(spq) + T−1(dpq)) = (1− ϵ4)spq + ϵ4dpq (23)

This shows that the darkest part of the flare layer hardly

influences the final image. Its weight ϵ4 ≈ 0, so it plays a

negligible role in the final image.

We can see that when the pixels in the scene image add

with flare image pixels from brightest to darkest, the weight

of the scene image becomes more significant from ϵ to 1− ϵ,

and the weight of the flare image becomes smaller from

1− ϵ to ϵ. Thus, when we blend two images, we perform a

convex combination for each pixel. Concretely, if the pixel

in the flare image is bright, it will be assigned a larger weight.

Otherwise, it will be assigned a smaller weight.

4. Proposed Flare-Corrupted Image Generation

4.1. Our Pipeline

Motivated by the discussion in Sec. 3, we assign weight

to every pixel in the flare image and scene image in gamma-

inversed space according to its illuminance via a convex

combination. The process can be divided into the following

three steps(1) Calculate the illuminance matrix of the flare

image. (2) Assign a weight to every pixel according to the

illuminance matrix. (3) Blend the scene layer and flare layer

by convex combination. We detail the process below.

Calculate illuminance matrix: Calculating the illuminance

matrix IF of the flare layer can be achieved by adding its

RGB channel and then normalizing it to [0, 1].

IF =
1

255× 3

∑

c=r,g,b

Fc. (24)

Assign a weight to every pixel: We determine the weight

of every pixel by the illuminance matrix IF . As discussed

in Sec. 3.3, if the pixel value of I is larger, we assign the

corresponding element of W a larger weight. If the pixel

value of I is smaller, we assign the corresponding element

of W a smaller weight. We use a function f to determine

the weigh according to the illuminance,

W = f(IF ). (25)

(a) Real flare-free image (b) Real flare-corrupted image

 (c) Direct add (d) Ours

Figure 4. Intensity Distribution of a real flare-free image (a), a

real flare-corrupted image (b), and synthetic flare-corrupted images

(c-d). The distribution of the image synthesized by our method

aligns well with the real case. (X-axis: intensity value from 0 to 1,

Y-axis: pixel intensity counting)

The weight function f is similar to TMO and we use a simple

sigmoid function as the weight function, expressed as:

f(x) =
1

1 + ep(x−q)
, (26)

where q = 0.5 and p is sampled from uniform distribution

U [4, 7].
Blend the scene layer and flare layer by convex combi-

nation: Using the calculated weight matrix, we can blend

the scene S and flare layers F by convex combination. Fol-

lowing previous methods [31, 6], we add the same Gaussian

noise to narrow the domain gap, whose variance is sampled

once per image from chi-square distribution σ2
∼ 0.01χ2.

I = (1−W )⊙ S +W ⊙ F +N(0, σ2), (27)

where ⊙ means element-wise multiplication.

4.2. Rationality Analysis

When a digital camera is pointed at a strong light source,

i.e. back-lighting photography, the automatic exposure mode

(AE) automatically adjusts the aperture setting and shutter

speed to avoid overexposure. The faster shutter speed and

smaller aperture size can reduce the light entering into the

lens system, which darkens the background. To further verify

our analysis that the shutter speed will be reduced, we used

iPhone 13 pro to take 100 images with and without strong

light sources and calculate the average shutter speed. The

average shutter speed of images without and with a light
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source is 9.85× 10−4s and 7.52× 10−5s respectively. We

also present a set of visual examples in Figure. 4 , where the

x-axis represents intensity values and the y-axis indicates

the number of pixels. As shown, in the two real images,

compared with the image without a strong light source, the

intensity distribution of the image with a strong light source

slightly moves to the darker part and the dynamic range of

the distribution becomes narrower. In the case of directly

adding a scene and a flare image, the illuminance distribution

in the synthetic image moves to the brighter illuminance part

(as shown in the of Figure. 4 (c)) The distribution shift [30] of

training data will make the deep model biased to the training

data and thus performs poorly in real cases. In contrast, our

method darkens the scene layer in the synthetic image, and

the distribution of the scene layer moves to the darker part

as shown in Figure. 4, which is consistent with the real case.

5. Proposed Light Source Recovery

Commonly, when a flare image is processed by a trained

neural network, the light source in the image is treated as a

flare and removed [31]. However, the task of flare removal

is to remove the flare and preserve the light source, we need

to post-process the output of the neural network to recover

light sources. To address this issue, current methods [31, 6]

choose the brightest part of a flare image and set an illumi-

nance threshold to determine whether it is a light source. As

the illuminance threshold of the daytime light source differs

from the nighttime light source [6], it is difficult to find a

optimal threshold for both daytime and nighttime cases.

Based on the fact that the light source is always in the

shoulder section of TMO, we use the same pipeline as men-

tioned in Sec. 4.1 for light source recovery. Specifically, we

first choose a strong convex function with a larger second-

order derivative as a weight function. The function can

suppress the weight in the linear section and only assign

larger weights to the pixels in the Shoulder section. We

choose is xα as the weight function.

Compared with the Sigmoid function in Eq. (26) the

strong convex function can ensure that only the light source

in the original is blended into the final image. α determines

what will be blended into the output of the neural network.

When α → +∞, the weight of the light source tends to one

and the weight of other parts tends to 0, so only the light

source will be recovered. When α → −∞, the weight of

the input image tends to 1, and the final image tends to be

the input image, which means that both the light source and

the flare will be recovered (See Sec. 6.2 for further analysis).

Thus, we choose α = 15 as default setting to recover light

sources. The process pipeline can be expressed as

Iinput =
∑

c=r,g,b

Cc, (28)

Wr = (
Iinput −min Iinput

max Iinput −min Iinput

)α, (29)

Ifinal = (1−Wr)⊙N(C) +Wr ⊙ C, (30)

where C denotes the input real flare-corrupted image, Iinput

denotes the illuminance matrix of C, Wr denotes the weight

matrix used for light source recovery, N(C) denotes the

output of the neural network, and Ifinal is the light source

recovered flare-free image we desired. Note that that we

use min-max normalization in Eq.(24) instead of dividing by

255 × 3. Such operation guarantees that the weight of the

brightest part in the input image will always be assigned to

1, i.e., the light source can be recovered.

6. Experiments

6.1. Flare Removal Comparison

We compare the results of our method with the traditional

flare removal method [1] and deep models [31, 6]’s approach.

Since the flare is also introduced by reflection and dust be-

tween and in front of the lens, we also compare our method

with reflection removal [34] and haze removal [13]. Since

Wu et al.’s work [31] is most related to our work, we follow

it to use a U-Net [24] as our flare removal baseline network.

We also test a recently proposed transformer-based U-Net:

Uformer [29]. Both Wu et al. [31] and Dai et al. [6] use

their flare datasets and apply the direct-add algorithm on

the clear image dataset provided in [26] to synthesize flare-

corrupted images. For fair comparison, we separately use

Dai et al. [6] and Wu et al.[31]’s flare datasets and the same

clean image dataset. Differently, we apply our proposed

pipeline to synthesize flare-corrupted images and compare

our results with them. We implement our method with Ten-

sorflow on a NVIDIA GTX 3090 GPU. We also provide the

implementation by MindSpore.

Qualitative Evaluation: Figrue. 5 shows the visual com-

parison of different methods. As we can see in the second

column, the traditional flare removal method [1] cannot re-

move scattering and reflection flare with different shapes.

The third and fourth columns show that de-reflection [34]

and dehaze [13] exhibit some ability to remove lens flare

but cannot remove flare thoroughly. Compared with Wu et

al. [31], because of the distribution shift introduced by the

directly-add synthesis approach, it hardly removes the night-

time flare and cannot remove the daytime flare thoroughly.

Dai et al. [6] propose to specially remove nighttime flare thus

performing worse in the daytime cases. With only [31]’s

training set, our method exhibits better flare removal in both

daytime and nighttime cases.

Quantitative Evaluation: We use full-reference metrics

PSNR and SSIM [28] to evaluate the performance of differ-

ent methods. The scores in Table. 1 are calculated on the
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(a) Input (b) Asha et al. [1] (c) Zhang et al. [34] (d) He et al. [13] (e) Wu et al. [31] (f) Dai et al. [6] (g) Ours

Figure 5. Qualitative comparison on [31, 6] real test images with different method using U-Net [24].

Table 1. Quantitative comparison with different methods on Flare7k test set.

Method Dehaze [13] Dereflection [34] Dai et al. [6] Dai et al. [6] Wu et al. [31] Wu et al. [31] Ours Ours Ours Ours

Training set × pretrained Flare7K [6] Flare7K [6] Wu [31] Wu [31] Flare7K [6] Flare7K [6] Wu [31] Wu [31]

Model × CEILNet [10] U-Net [24] Uformer [29] U-Net [24] Uformer [29] U-Net [24] Uformer [29] U-Net [24] Uformer [29]

PSNR 19.7 23.3 25.4 25.7 23.6 23.7 25.3 25.7 25.9 26.3

SSIM [28] 0.68 0.872 0.876 0.879 0.870 0.863 0.884 0.890 0.896 0.884

test images provided in Flare 7K [6] because this dataset

has the paired data in both daytime and nighttime. Table. 1

shows that the model trained by our synthesis pipeline and

Wu et al. [31] dataset attains the best result under the model

of U-Net. Our method achieves slight improvements when

using Flare7k [6] training set because all the flare images

in [6] are synthetic. We also use a transform-based model

Uformer [29] to test our synthesis pipeline. It increases in

PSNR but decreases in SSIM.

User Study: We conduct a user study to compare our ap-

proach with [31, 13, 1, 34] trained under two datasets [31, 6].

We use these five methods to produce flare-free images. Each

time, participants are presented with two flare-free images

produced by two methods. They are asked to vote for which

one has a better result. Table. 2 shows that more participants

recognize the model trained using our method. The model

using our method trained on [31] dataset improves a lot on

the [6] test set and our consumer electronics testset. We also

train our model using Flare7K [6] dataset. The performance

of our approach has been consistently recognized.

6.2. Light Source Recovery Comparison

Single Light Source: In current methods [31], they first set

a threshold such as 0.99 to choose the candidates of the light

source and apply a smoothing filter. It performs well when

the light source is bright enough. However, if the light is

not that bright, it cannot be recovered. As pointed out in [6],

most of the time, the light at nighttime will not be larger than

0.99. Figure. 6 shows that our method can recover the moon

and street lamp at nighttime while [31, 6] fails.

Multiple Light Sources: Figure. 7 shows that current light

source recovery methods [31, 6] can only recover the most

conspicuous light source, but cannot recover the small light

sources in the background. In contrast, our method recovers

all the light sources with different sizes and positions well.

Comparison of different α: We compare different α on

the performance of our light source recovery qualitatively

and quantitatively. Table. 3 and Figure. 8 show that when

α > 15, PSNR and SSIM maintain stability at 17.88 and

0.527. If α is too small, the flare will also be blended into the

final image. Thus, we choose α = 15 as the default setting.

6.3. Generalization Comparison

As mentioned in Wu et al. [31], all reflective flares of

dataset are captured with the same camera, distance, and

focal length f = 13mm. However, cameras of different

smartphones have different focal lengths and the distance

of light source varies a lot. Since the current flare removal

7



Table 2. User study. The result is similar to quantitative evaluation. There are 2001 images in [31]’s flare dataset is captured in real life,

while Flare7K [6] dataset is all synthetic. Our method trained using Wu et al. [31] dataset performs better.

Trained on [31] dataset Trained on [6] dataset

Test dataset [31] dataset [6] dataset Our dataset [31] dataset [6] dataset Our dataset

Ours: Deflarespot[1] 100%: 0% 100%: 0% 93%: 7% 90%:10% 100%: 0% 95%: 5%

Ours: Dehaze[13] 90%:10% 93%: 7% 100%: 0% 72%:28% 93%: 7% 87%:13%

Ours: Dereflection[34] 95%: 5% 79%:21% 87%:13% 51%:49% 95%: 5% 76%:24%

Ours: Wu[31] 55%:45% 100%: 0% 100%: 0% 52%:48% 57%:43% 54%:46%

(a) Input (b) [31, 6] (c) Ours

Figure 6. Single light source recovery on real images.

test set only contains limited flare types, camera models,

and light source types, it constrains the comparison of the

generalization capability of different methods.

To solve this issue, we collect an unpaired Consumer

Electronics test dataset for evaluation. Flare images in our

dataset are captured in both daytime and nighttime. For cam-

era models, it contains 100 images captured by ten different

cameras, including iPhone 13 pro, iPhone 11, Xiaomi 12S

Ultra, Xiaomi 11, iPad Air4, iPad 2020, Huawei Matepad,

Vivo reno 4 pro, Huawei Mate 40 and Huawei Mate 20. For

flare patterns, compared with Flare7K [6] test set that only

contains flare streak and flare haze and Wu et al. [31] test set

that only contains flare streak, flare blob, and color bleed-

ing, our dataset contains richer flare shapes including streak,

spot, blob, haze, and color bleeding. For light source types,

the flares are taken under different light sources such as the

sun, moon, street lamp, flashbulbs, etc. Figure. 9 shows the

generalization comparison of models trained using differ-

ent synthesis methods. Our method can effectively remove

different flares taken by different digital cameras.

6.4. Flare Removal for Object Detection

Both scattering and reflective flares can pollute the images.

To examine the influence of flare removal on object detection,

we use pre-trained YOLOv5 detector to process the images

with flares and flare removal results. For streak flare, it

(a) Input (b) [31, 6] (c) Ours

Figure 7. Multiple light sources recovery on real images.

shades the image details so that detector cannot find the

object. The first and second column in Figure. 10 shows

that the flare streak shaded the chair and motorcycle, so the

detector cannot detect it. For reflective flare, the detector

misunderstands it as an irrelevant object. The third and

fourth columns show that the detector misunderstands the

flare as a car and a traffic light. With our method to remove

flare, the detector works better.

7. Conclusion

In this paper, we proposed a new method to synthesize

flare-corrupted images. Taking tone mapping into consid-

Table 3. Quantitative Comparison of different α.

α 1 5 10 15 20 25

PSNR 15.94 17.68 17.86 17.88 17.88 17.88

SSIM 0.508 0.527 0.528 0.528 0.528 0.528

α=1 α=5 α=15 α=20

Figure 8. Qualitative Comparison of different α.
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Figure 9. Visual comparison on our Consumer Electronics test dataset.

Figure 10. Object detection with flare (top) and after flare removal

with the proposed solution (bottom).

eration, the flare-corrupted images synthesized using our

method avoid distribution shift and overflow, making the

flare removal model performs well. We also proposed a new

method to smoothly recover multiple light sources. It uses

a power function to soften the extraction range of the light

source and avoid the hard threshold in other methods. To

examine the generalization performance of flare removal

methods, we contribute a new dataset that contains real flare-

corrupted images captured by diverse consumer electronics

for evaluation. Extensive experiments show that the model

trained using paired data synthesized by our practice can bet-

ter remove lens flare, and our approach can recover multiple

light sources effectively.
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