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Abstract
Using unlabeled wild data containing both in-
distribution (ID) and out-of-distribution (OOD)
data to improve the safety and reliability of models
has recently received increasing attention. Exist-
ing methods either design customized losses for la-
beled ID and unlabeled wild data then perform joint
optimization, or first filter out OOD data from the
latter then learn an OOD detector. While achieving
varying degrees of success, two potential issues re-
main: (i) Labeled ID data typically dominates the
learning of models, inevitably making models tend
to fit OOD data as IDs; (ii) The selection of thresh-
olds for identifying OOD data in unlabeled wild
data usually faces dilemma due to the unavailabil-
ity of pure OOD samples. To address these issues,
we propose a novel loss-difference OOD detection
framework (LoD) by intentionally label-noisifying
unlabeled wild data. Such operations not only en-
able labeled ID data and OOD data in unlabeled
wild data to jointly dominate the models’ learning
but also ensure the distinguishability of the losses
between ID and OOD samples in unlabeled wild
data, allowing the classic clustering technique (e.g.,
K-means) to filter these OOD samples without re-
quiring thresholds any longer. We also provide the-
oretical foundation for LoD’s viability, and exten-
sive experiments verify its superiority.

1 Introduction
The safety and reliability of traditional machine learn-
ing models often face challenges when deployed in real-
world environments due to unexpected occurrence of out-
of-distribution (OOD) data [Nguyen et al., 2015]. To meet
this challenge, the OOD detection problem has been stud-
ied [Hendrycks and Gimpel, 2016; Yang et al., 2024], which
requires the models not only predict the true class of in-
distribution (ID) data but also effectively reject the OOD data.
To date, numerous OOD detection methods have been devel-
oped [Liu et al., 2020b; Abati et al., 2019; Wang et al., 2022;
Hendrycks et al., 2018; Katz-Samuels et al., 2022], and
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among them, the methods leveraging unlabeled wild data
containing ID and OOD samples to improve the performance
of OOD detection has recently received increasing attention
[Katz-Samuels et al., 2022]. This mainly attributed to the
fact that such data can be freely collected during the deploy-
ment of any machine learning model in its operational envi-
ronment, while also allowing for the capture of the true test-
time OOD distribution.

Despite the promise, harnessing the power of unlabeled
wild data is non-trivial due to the heterogeneous mixture of
ID and OOD samples. Existing methods either adopt a joint
optimization strategy [Katz-Samuels et al., 2022] or a two-
step strategy (i.e., filtering and learning) [Du et al., 2024].
The former aims to design customized losses for labeled ID
and unlabeled wild data to jointly optimize the models in a
semi-supervised learning manner. The latter first filters out
OOD samples from the unlabeled wild data using customized
OOD score (usually based on labeled ID data), then uses them
along with labeled ID data to learn an OOD detector. While
achieving varying degrees of success, two potential issues of
these methods remain:
✓ The model-bias issue. Labeled ID data typically dom-

inates the model learning in both two strategies, espe-
cially for the two-step strategy, thus inevitably making
the model tend to fit OOD data as IDs.

✓ Threshold selection dilemma. The selection of thresh-
olds for determining OOD samples in unlabeled wild
data usually faces challenges due to the unavailability
of pure OOD samples.

To address these issues, this work proposes a novel loss-
difference OOD detection framework (abbreviated as LoD)
by intentionally label-noisifying unlabeled wild data. LoD
adopts the filtering and learning strategy and its key lies in the
loss-difference filtering module with intentional label-noises.
In this module, the whole unlabeled wild data is intentionally
labeled as a single K+1-th class (assuming that ID data con-
tain K classes), and then trained together with the labeled ID
data through the fully-supervised manner of K + 1 classifi-
cation. We would like to emphasize that such operations in-
geniously transform the OOD filtering problem in unlabeled
wild data into a label-noise learning problem, allowing us
to solve the aforementioned issues by leveraging the inher-
ent properties in label-noise learning. In this way, the OOD
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Figure 1: The cross-entropy loss changes of ID (label-noise) and
OOD (label-clean) samples in unlabeled wild data when they are
intentionally labeled as K + 1-th class. These two types of samples
typically exhibit different loss curves due to the differences in how
learning progresses for each.

samples in unlabeled wild data is intentionally transformed
into label-clean samples, while the ID counterparts become
label-noise ones. The former naturally and seamlessly en-
ables OOD samples in unlabeled wild data to jointly domi-
nate the model learning with the labeled ID data, effectively
addressing the model-bias issue. Meanwhile, the latter pro-
vides the key clues for differentiating ID and OOD samples
in unlabeled wild data due to the significant differences in the
loss curves between ID (label-noise) and OOD (label-clean)
samples during training.

As shown in Figure 1, as the OOD samples in the unla-
beled wild data are correctly labeled (label-clean), the model
fits them well as learning progresses, leading to a gradual de-
crease and convergence of the loss curve. In contrast, the cor-
responding ID part, due to being incorrectly labeled (label-
noise) and conflicting with the originally labeled ID data, ex-
hibits not only higher loss values but also larger fluctuations
during training. Such significant and natural differences al-
low us to employ classic clustering models, like K-means,
to filter these OOD samples without requiring thresholds any
longer. In particular, we also provide theoretical foundation
to support the viability of such a module. Overall, our contri-
butions can be highlighted as follows:

• Two potential issues (i.e., the model-bias issue and
threshold selection dilemma) in this OOD research line
are identified, providing some new insights for the sub-
sequent modeling of OOD detection.

• The OOD filtering problem in unlabeled wild data is
elegantly reformulated as a label-noise learning prob-
lem, leading to a novel LoD OOD detection frame-
work, which not only effectively addresses the model-
bias issue but also circumvents the threshold selection
dilemma.

• Theoretical foundation is provided to support the viabil-
ity of LoD. Meanwhile, extensive experiments are also
conducted to demonstrate its superiority.

2 Related Works
2.1 Out-of-Distribution Detection
To improve the safety and reliability of models in detect-
ing OOD data, various OOD methods have been developed
[Zhu et al., 2023; Zheng et al., 2023; Wang et al., 2023b;
Yang et al., 2024; Li et al., 2024b; Behpour et al., 2024;
Fang et al., 2024; Sharifi et al., 2025], including adopting
the classification confidence or entropy, modeling the ID den-
sity, leveraging auxiliary OOD data, and more. Among these,
methods using auxiliary OOD data have demonstrated en-
couraging OOD detection performance over the counterpart
without auxiliary data [Lee et al., 2017; Bevandić et al., 2018;
Malinin and Gales, 2018; Liu et al., 2020b; Chen et al., 2021;
Wei et al., 2022; Du et al., 2022; Wang et al., 2023a;
Sharifi et al., 2025]. Despite the promise, there are two pri-
mary limitations: First, such data may not match the true
distribution of OOD data in the wild; Second, collecting
such data can be labor-intensive and inflexible. To address
these limitations, recent works [Katz-Samuels et al., 2022;
Du et al., 2024] proposed to leverage the unlabeled "in-the-
wild" data due to they are freely collected during the deploy-
ment of any machine learning model in its operational envi-
ronment, while also allowing for the capture of the true test-
time OOD distribution.

Our work falls into this research line, and as mentioned
earlier, though the methods in this research line have achieved
varying degrees of success, they still face two potential weak-
nesses, i.e., the model-bias issue and the threshold selection
dilemma. These motivate us to seek new methods to address
these issues.

2.2 Training Neural Networks with Label Noises
In many applications [Guan et al., 2018], due to the cost
or difficulty of manual labeling, datasets are often annotated
through online queries [Yuan et al., 2024a] or crowdsourcing
[Li et al., 2024a]. Such annotations inevitably contain nu-
merous mistakes, i.e., label-noises. When trained on the data
mixed clean labels and noise labels, deep neural networks
have been observed to first fit label-clean data during an early
learning phase, and then start memorizing the label-noise data
after sufficient epochs of training [Liu et al., 2020a]. This
phenomenon is independent of the optimizations used dur-
ing training or the architectures of neural networks employed
[Arpit et al., 2017]. In particular, during the early learning
phase, label-clean and label-noise data will have different loss
curves due to the difference in how learning progresses for
each type. This has been exploited in many label-noise learn-
ing works [Forouzesh et al., 2022; Li et al., 2023; Yuan et
al., 2024b; Lin et al., 2024; Lienen and Hüllermeier, 2024;
Yue and Jha, 2024]. For more information, please refer to the
recent review work [Song et al., 2022].

In this paper, we propose a novel loss-difference OOD de-
tection framework by intentionally label-noisifying unlabeled
wild data, which interestingly transforms the OOD filtering
problem in unlabeled wild data into a label-noise learning
problem. This enables us to leverage the aforementioned in-
herent phenomenon of label-noise learning to effectively filter
OOD data from the unlabeled wild data.
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Figure 2: Overview of the loss-difference OOD detection framework by intentionally label-noisifying unlabeled wild data.

3 Methodology
3.1 Problem Formulation
Labeled ID Data Let X denote the input space and
Y = {1, ...,K} represent the label space. Let Dtrain

in =
{(xi, yi)}ni=1 denote the labeled training set drawn indepen-
dently and identically from PXY . Pin is the marginal distribu-
tion of PXY on X , which is also referred to as the ID distri-
bution.

Unlabeled Wild Data The main challenge in OOD detec-
tion is the lack of labeled OOD data. In particular, the sample
space for potential OOD data can be prohibitively large, mak-
ing it expensive to collect labeled OOD data. To model the re-
alistic environment, recent works [Katz-Samuels et al., 2022;
Du et al., 2024] incorporated unlabeled wild data Dwild =
{x̃1, ..., x̃m} into OOD detection. Unlabeled wild data con-
sists of potentially both ID and OOD data, and can be freely
collected upon deploying an existing model in its natural
habitats. Following [Katz-Samuels et al., 2022], the Hu-
ber contamination model is employed to characterize the
marginal distribution of the unlabeled wild data:

Pwild := (1− π)Pin + πPout, (1)

where π ∈ (0, 1], and Pout is the OOD distribution defined
over X .

Learning Goal The learning framework aims to build the
OOD detector gθ and the multi-class classifier fθ by lever-
aging data from both Dtrain

in and Dwild. Following [Du et al.,
2024], we here are interested in the following measurements
for model evaluation:

↓ FPR(gθ) := Ex∼Pout(1{gθ(x) = in}),
↑ TPR(gθ) := Ex∼Pin(1{gθ(x) = in})

3.2 Loss-Difference OOD Detection Framework
To effectively address the two aforementioned potential is-
sues, i.e., the model-bias issue and the threshold-selection
dilemma, we innovatively propose a novel loss-difference
OOD detection framework (abbreviated as LoD) by inten-
tionally label-noisifying unlabeled wild data. As shown in
Figure 2, LoD follows the two-step strategy and contains two
main modules, i.e., loss-difference OOD filtering module and
OOD detector learning module. Next, we will elaborate on
the specific details of each module.

Loss-difference OOD Filtering Module
In this part, a loss-difference filtering mechanism with in-
tentional label-noises is developed, which ingeniously refor-
mulates the OOD filtering problem in unlabeled wild data as
a label-noise learning problem with controllable label-noise
ratio. This allows us to leverage the inherent properties of
label-noise learning demonstrated in Section 2.2 to effec-
tively filter OOD data from the unlabeled wild data.

In specific, we first intentionally label the whole unlabeled
wild data as a single K + 1-th class (assuming that ID data
contains K classes) and then train them together with labeled
ID data in a fully-supervised manner of K + 1 classification,
as follows:

L =
1

|Btrain
in |

∑
(xi,yi)∼Btrain

in

ℓ(ŷi, yi)+

1

|Bwild|
∑

(xi,yi)∼Bwild

ℓ(ŷi, yK+1), ŷi = f(xi,θ),

(2)

where f(·,θ) ∈ F denotes the K + 1 classifier, l(·, ·) repre-
sents the vanilla cross-entropy (CE) loss. Each training batch
consists of two parts: Btrain

in and Bwild, respectively sampled
from labeled ID data and unlabeled wild data. Note that the
ratio of |Btrain

in | : |Bwild| ≥ 1 is controllable. In fact, we indi-
rectly control the label-noise ratio of the learning task by con-
trolling this ratio (for more details, please refer to Section 4).

By labeling the entire unlabeled wild data as a single K+1-
th class, the ID samples in Dwild are intentionally converted to
label-noise samples while the OOD samples in Dwild become
label-clean ones. According to the inherent phenomenon of
early learning stage in label-noise learning, the loss curves of
these two types of labeled samples will exhibit significant dif-
ference during the early learning stage, as shown in Figure 1.
This discrepancy provides us a critical clue for effectively dis-
tinguishing between them. Therefore, after training the K+1
classifier, we conduct clustering operations on the loss values
of unlabeled wild data gained during training so as to filter
the OOD samples from Dwild, which does not need the filter-
ing thresholds any more. Particularly, clustering in our case
has a well-defined number of clusters – Two – corresponding
to the ID and OOD clusters represented by their distinct loss
behaviors throughout the training process, e.g., higher loss-
values for ID data while lower counterparts for OOD data.

Considering the efficiency issue, we here utilize the mean
of loss-values during training as the new features for each
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Figure 3: The mean cross-entropy loss curves respectively for all ID
(label-noise) and OOD samples (label-clean) in unlabeled wild data
when they are intentionally labeled as K + 1-th class.

sample in Dwild. Then the classic K-means clustering tech-
nique is employed to achieve the OOD samples filtering from
unlabeled wild data. Let µ1, µ2 (µ1 > µ2) respectively de-
note the ID and OOD cluster centers, while d1, d2 respec-
tively denote the distances between the corresponding sample
and the two cluster centers. We filter the OOD samples from
the unlabeled wild data by the following rule:

ŷ =

{
ID data, if d1 < d2,
OOD data, otherwise. (3)

Remark. At first glance, labeling the entire set of unlabeled
wild data as a single K + 1-th class seems potentially to un-
dermine the model learning. Intriguingly, however, once we
switch to consider filtering the OOD samples from the label-
noise perspective, such operations, just on the contrary, bring
at least the following three-fold advantages:

• First, OOD samples in unlabeled wild data are correctly
labeled (label-clean), naturally and seamlessly enabling
them to jointly dominate the model learning with labeled
ID data, thus effectively circumventing the model-bias
issue.

• Second, as mentioned earlier, the ID samples in Dwild
being erroneously labeled (label-noise) as K + 1-th
class contradict the label-correct ones in labeled ID data
Dtrain

in , thereby resulting in their loss curves exhibiting
both higher values and greater fluctuations compared to
those of OOD samples, such as their mean-loss curves
shown in Figure 3. This discrepancy provides us a fairly
clear signal to distinguish ID and OOD samples in the
unlabeled wild data.

• Third, our LoD is data-centric in nature, wherein we
just relabel the unlabeled wild data as the intentionally
K + 1-th class without any modifications to the net-
work architectures we employed. This endows our LoD
stronger applicability (for related experiments, please re-
fer to Appendix E).

To solidly demonstrate the viability of this OOD filtering
module, we also provide the theoretical analyses to support
our first two claims, which will be detailed in Section 4.

OOD Detector Learning Module
After obtaining the candidate OOD samples Dout from the
unlabeled wild data, we training an OOD detector gθ using

them together with labeled ID data Dtrain
in . Similar to [Du et

al., 2024], we adopt the following optimization objective:

L(gθ) = Ex∈Dtrain
in
1{gθ(x) ≤ 0}+ Ex̃∈Dout1{gθ(x̃) > 0},

(4)
where the binary sigmoid loss is employed as the smooth ap-
proximation of the 0/1 loss to make it tractable. In addition,
a K-class classifier fθ is also trained using CE loss on labeled
ID data along with gθ to ensure the ID accuracy. Algorithm 1
denotes the entire workflow of our LoD.

Algorithm 1 LoD OOD Detection Framework

Input: In-distribution data Dtrain
in , unlabeled wild data Dwild, Max

Epoch T , Batch size |B|.
Output: OOD detector gθ and classifier fθ .
1: # Loss-difference OOD detection module
2: Initializing: Model parameters θ, Dwild labeled as K + 1-th

class, loss record matrix V = {} ∈ R|Dwild|×T .
3: for epoch = 1 to T do
4: Batch B = Btrain

in ∪Bwild, where Btrain
in samples fromDtrain

in and
Bwild samples from Dwild.

5: Update K + 1 classifier f(·,θ) based on Eq.(2).
6: Record losses of unlabeled wild data. V ← V ∪ {li | i ∈

(1, |Bwild|)}
7: end for
8: Calculate the mean-loss set of wild data {ui} = mean(V),

where {ui} ∈ R|Dwild|×1.
9: Cluster and detect candidate OOD samples set Dout based on

Eq.(3).
10: # OOD detector learning module
11: for epoch = 1 to T do
12: Batch B = Btrain

in ∪ Bout, where Btrain
in samples from Dtrain

in and
Bout samples from Dout.

13: Update fθ and gθ based on Eq.(4).
14: end for

4 Theoretical Analysis
4.1 Mitigation of The Model Bias
For the first claim in Subsection 3.2, we here provide a theo-
retical analysis at the gradient level to demonstrate that in our
LoD framework, labeled ID data and OOD data in Dwild can
jointly dominate the model learning. Let N1 denote the num-
ber of samples in Bin, while N2 and N3 denote the number
of samples respectively from IDs and OODs in Bwild. Then
Eq.(2) can be rewritten in the following form:

L =
1

N1

∑
(xi,yi)∼Bin

ℓ(ŷi, yi) +
1

N2

∑
(xi,yi)∼Bwild

ℓ(ŷi, yK+1)︸ ︷︷ ︸
ID data

+
1

N3

∑
(xi,yi)∼Bwild

ℓ(ŷi, yK+1)︸ ︷︷ ︸
OOD data

.

(5)
Let ∇LNk

= 1
Nk

∑Nk

i=1 ∇l(ŷi, yi), k = 1, 2, 3, denote the
gradient of the corresponding part with respect to the model
parameters θ. For the OOD samples in Bwild, evidently,



they are correctly labeled (label-clean), the model parameters
therefore will be updated in the correct gradient direction.

As for ID samples, they consist of two parts: one part
sampled from Dtrain

in (label-clean), and the other part sampled
from Dwild (label-noise). Then the update of the model pa-
rameters θ is as follows:

θt+1 = θt − η(∇LN1 +∇LN2), (6)
where t denotes the number of steps for model update, and η
is the learning rate. According to Eq.(6), the update of θ is
determined by (∇LN1

+∇LN2
). Since |Btrain

in | > |Bwild| and
|Bwild| ≥ N2, we have

|Btrain
in | > |Bwild| ≥ N2.

This indicates that correctly labeled ID samples dominate the
updating of model parameters, especially when |Btrain

in | ≫
N2. In summary, we have the labeled ID data Dtrain

in and the
OOD data in Dwild that can jointly dominate the model learn-
ing, thus effectively addressing the model-bias issue.

4.2 Discriminability between ID and OOD CE
Mean-Losses

As mentioned earlier, the key to our LoD lies in ingeniously
transforming the OOD filtering problem into a label-noise
learning problem with controllable label-noise ratio, which
allows us to leverage the established theoretical foundation of
label-noise learning [Liu et al., 2020a; Yue and Jha, 2024] to
ensure the feasibility of our LoD. The work [Liu et al., 2020a]
has shown that the phenomenon in early learning stage, when
training with noisy labels, is intrinsic to high-dimensional
classification tasks, even in the simplest setting, far from be-
ing a peculiar feature of deep neural networks. Therefore, for
the second claim in Subsection 3.2, a theoretical analysis of
loss gap between ID (label-noise) and OOD (label-clean) data
in Dwild is provided here using a similar setting in [Liu et al.,
2020a].

Considering a two class dataset that consists of n indepen-
dent samples (xi, yi) drawn from a mixture of two Gaussians
in Rd as follows.

x ∼ N (+v, σ2Id×d), if y = +1

x ∼ N (−v, σ2Id×d), if y = −1,

where v is an arbitrary unit vector in Rd and σ2 is a small
constant. Denote y as the true hidden label and ỹ as the ob-
served label. Assume that for any sample xi,

ỹ =

{
yi, with probability 1−∆,
−yi, with probability ∆,

(7)

where ∆ ∈ (0, 1/2) is the label-noise ratio. Let us consider
a linear classifier f(·,θ) trained by gradient descent on CE
loss:

min
θ∈R2×d

LCE(θ) := − 1

n

n∑
i=1

2∑
j=1

yi log(f(xi,θ)). (8)

In order to correctly classify the true classes well (and not
overfit to the noisy labels), the rows of θ should be corre-
lated with the vector v. Let ∇LCE(θ) denote the gradient of
Eq.(8). According to [Liu et al., 2020a], we have the follow-
ing lemma.

Lemma 1 (Early-learning succeeds [Liu et al., 2020a]). De-
note by {θt} the iterates of gradient descent with step size η.
For any ∆ ∈ (0, 1/2), there exists a constant δ∆, depending
only on ∆, such that if δ ≤ δ∆, then with high probability
1− o(1), there exists a T = Ω(1/η) such that: for all t < T ,
we have ∥θt − θ0∥ ≤ 1 and

−∇LCE(θt)
Tv/∥∇LCE(θt)∥ ≥ 1/6.

Lemma 1 indicates that under the condition of label-noise
ratio ∆, the model parameters θ update along the proper gra-
dient direction during the early learning stage. This means,
during this period, the loss curves of ID (label-noise) and
OOD (label-clean) samples in Dwild will have significantly
different characteristics, with larger loss values and greater
fluctuations for ID samples versus smaller loss values and
smaller fluctuations for OOD ones. To theoretically analyze
this, we have the following proposition.
Proposition 1. Let li denote the loss value of each sample
in Dwild, which is bounded by R. lin = 1

|Dwild
in |

∑
i∈Dwild

in
li and

lout =
1

|Dwild
out |

∑
i∈Dwild

out
li respectively denote the mean losses

of ID and OOD sets from unlabeled wild data Dwild, and n =
|Dwild

in | + |Dwild
out |. Under the Lemma 1, with high probability,

we have

lin − lout ≥ 1− 2e−θT v+ 1
2∥θ∥

2δ2 −O(
R√
n
).

Proposition 1 demonstrates that the cross-entropy mean
losses of ID and OOD samples in Dwild are distinguishable,
just as the two curves shown in Figure 3. The proof is
provided in Appendix A of supplementary materials (https:
//github.com/ChuanxingGeng/LoD).

5 Experiments
5.1 Implementation Details
Our LoD (https://github.com/ChuanxingGeng/LoD) frame-
work contains two main modules, i.e., loss-difference OOD
filtering module and OOD detector learning module. For
these two modules, we follow [Du et al., 2024; Katz-Samuels
et al., 2022] and employ Wide ResNet [Zagoruyko, 2016]
with 40 layers and widen factor of 2 as the backbone. More-
over, for the loss-difference OOD filtering module, we use
stochastic gradient descent with a momentum of 0.9 as the
optimizer, and set the initial learning rate to 0.01. We train
for 100 epochs using cosine learning rate decay, a batch size
of 128 in which |Btrain

in | : |Bwild| = 3 : 1 , and a dropout
rate of 0.3. For the OOD detector learning module, similar
to [Du et al., 2024], we load a pre-trained ID classifier and
add an additional linear layer which utilize the penultimate-
layer features of ID classifier for binary classification. The
initial learning rate is set to 0.001, and the remaining training
configurations are consistent with those of the former mod-
ule. All experiments are conducted on a single NVIDIA RTX
3090 GPU.
Evaluation Metrics. Similar to [Du et al., 2024; Katz-
Samuels et al., 2022], we adopt the following evaluation
metrics: (1) the false positive rate (FPR95) of OOD exam-
ples when true positive rate of ID examples is at 95%, (2)

https://github.com/ChuanxingGeng/LoD
https://github.com/ChuanxingGeng/LoD
https://github.com/ChuanxingGeng/LoD


Methods
OOD Dataset

ACCSVHN Places LSUN-Crop LSUN-Resize Textures Average
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

π=0.1
OE (ICLR’19) 1.57 99.63 60.24 83.43 3.83 99.26 0.93 99.79 27.89 93.35 18.89 95.09 71.65
Energy(w/OE) (NeurIPS’20) 1.47 99.68 54.67 86.09 2.52 99.44 2.68 99.50 37.26 91.26 19.72 95.19 73.46
WOODS (ICML’22) 0.12 99.96 29.58 90.60 0.11 99.96 0.07 99.96 9.12 96.65 7.80 97.43 75.22
SAL (ICLR’24) 0.07 99.95 3.53 99.06 0.06 99.94 0.02 99.95 5.73 98.65 1.88 99.51 73.71
LoD (Ours) 0 100 3.34 99.16 0 100 0 100 4.79 98.87 1.63 99.61 73.85

π=0.5
OE (ICLR’19) 2.86 99.05 40.21 88.75 4.13 99.05 1.25 99.38 22.86 94.63 14.26 96.17 73.38
Energy(w/OE) (NeurIPS’20) 2.71 99.34 34.82 90.05 3.27 99.18 2.54 99.23 30.16 94.76 14.70 96.51 72.76
WOODS (ICML’22) 0.17 99.80 21.87 93.73 0.48 99.61 1.24 99.54 9.95 95.97 6.74 97.73 73.91
SAL (ICLR’24) 0.02 99.98 1.27 99.62 0.04 99.96 0.01 99.99 5.64 99.16 1.40 99.74 73.77
LoD (Ours) 0 100 1.53 99.66 0 100 0 100 3.72 99.19 1.05 99.77 74.32

π=0.9
OE (ICLR’19) 0.84 99.36 19.78 96.29 1.64 99.57 0.51 99.75 12.74 94.95 7.10 97.98 72.02
Energy(w/OE) (NeurIPS’20) 0.97 99.64 17.52 96.53 1.36 99.73 0.94 99.59 14.01 95.73 6.96 98.24 73.62
WOODS (ICML’22) 0.05 99.98 11.34 95.83 0.07 99.99 0.03 99.99 6.72 98.73 3.64 98.90 73.86
SAL (ICLR’24) 0.03 99.99 2.79 99.89 0.05 99.99 0.01 99.99 5.88 99.53 1.75 99.88 74.01
LoD (Ours) 0 100 0.48 99.90 0 100 0 100 2.78 99.41 0.65 99.86 74.34

Table 1: Evaluation results of FPR95↓ (%), AUROC↑ (%) and ACC↑ (%) on standard benchmarks. CIFAR100 is ID, and bold numbers
highlight the best results.

Methods
Dataset

ACCCIFAR10 CIFAR+10 CIFAR+50 TinyImageNet Average
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

π = 0.1
OE (ICLR’19) 30.83 94.9 11.40 97.98 22.21 95.98 82.3 75.34 36.69 91.05 91.45
Energy(w/OE) (NeurIPS’20) 38.36 89.85 16.40 96.51 36.18 90.49 88.48 74.30 44.86 87.79 86.98
WOODS (ICML’22) 32.33 93.70 22.39 95.95 22.12 95.76 74.60 78.62 37.86 91.01 92.43
SAL (ICLR’24) 12.95 97.35 4.76 98.88 10.66 97.63 48.35 86.71 19.18 95.14 91.50
LoD (Ours) 2.56 99.40 1.50 99.62 1.96 99.39 47.61 91.55 13.41 97.49 91.44

π = 0.5
OE (ICLR’19) 13.77 97.68 4.08 99.09 9.80 98.27 76.13 80.62 25.95 93.92 91.82
Energy(w/OE) (NeurIPS’20) 9.16 97.70 3.70 98.98 10.01 97.43 75.93 83.58 24.70 94.42 87.91
WOODS (ICML’22) 17.89 96.64 12.50 97.69 12.68 97.68 70.60 81.42 28.42 93.36 92.53
SAL (ICLR’24) 12.76 97.38 4.84 98.87 10.86 97.60 48.17 86.77 19.16 95.16 91.39
LoD (Ours) 2.32 99.47 1.04 99.71 1.96 99.46 46.44 91.52 12.94 97.54 91.33

π = 0.9
OE (ICLR’19) 6.40 98.71 1.56 99.50 4.94 98.97 67.45 84.98 20.09 95.54 92.10
Energy(w/OE) (NeurIPS’20) 2.95 98.63 1.30 99.41 2.18 98.52 58.84 88.92 16.32 96.37 89.58
WOODS (ICML’22) 12.82 97.50 10.98 98.03 10.51 98.07 68.01 82.82 25.58 94.11 92.17
SAL (ICLR’24) 12.95 97.34 4.30 98.91 11.11 97.56 49.19 86.66 19.39 95.12 91.41
LoD (Ours) 2.19 99.45 1.04 99.77 1.90 99.45 45.24 91.80 12.59 97.62 91.50

Table 2: Evaluation results of FPR95↓ (%), AUROC↑ (%) and ACC↑ (%) on hard benchmarks, and bold numbers highlight the best results..

Area Under the Receiver Operating Characteristic curve (AU-
ROC), and (3) ID classification Accuracy (ACC).

To comprehensively evaluate our LoD framework, we con-
duct extensive experiments on both standard benchmarks and
hard benchmarks (newly curated in this paper) detailed in the
following subsections. Moreover, limited by space, we de-
fer additional experiments in the supplementary materials, in-
cluding results on CIFAR10 (Appendix C), results on unseen
OOD datasets (Appendix D), and results on different network
structures (Appendix E).

5.2 Experiments on Standard Benchmarks
Datasets. For standard benchmarks, we here follow [Du
et al., 2024; Katz-Samuels et al., 2022], and choose CI-
FAR100 as in-distribution (ID) datasets (Pin). For the out-
of-distribution (OOD) test datasets (Pout), we use a diverse
collection of natural image datasets including SVHN [Netzer
et al., 2011], Textures [Cimpoi et al., 2014], Places [Zhou et

al., 2017], LSUN-Crop [Yu et al., 2015] and LSUN-Resize
[Yu et al., 2015]. For the unlabeled wild data (Pwild), we fol-
low [Du et al., 2024] and mix datasets by combining a subset
of ID data with OOD data under different mixture propor-
tions π ∈ {0.1, 0.5, 0.9}. Specifically, the ID dataset is split
into two equal halves (25,000 images per half), with one half
used to mix with an OOD dataset (e.g., SVHN) to create the
unlabeled wild data (Pwild).
Main Results. We mainly compare our LoD with 4 lat-
est methods using unlabeled wild data including Outlier Ex-
posure (OE) [Hendrycks et al., 2018], energy-regularization
learning (Energy) [Liu et al., 2020b], WOODS [Katz-
Samuels et al., 2022], and SAL [Du et al., 2024]. Table 1
presents a comprehensive comparison of different methods
on standard benchmarks, highlighting the substantial advan-
tages of our proposed LoD. Across all datasets and π val-
ues, our approach consistently delivers superior performance,
achieving an FPR95 close to 0%, which is significantly lower



than the current SOTA baseline, SAL. Notably, on the most
challenging Textures, our method outperforms SAL with sub-
stantial reductions in FPR95 by 0.94%, 1.92%, and 3.10%
for π = 0.1, 0.5, 0.9, respectively. Moreover, while existing
SOTA methods demonstrate strong performance in AUROC,
our LoD achieves notable improvements even in this aspect.
Importantly, our LoD maintains competitive in-distribution
accuracy, matching or surpassing the performance of SOTA
methods such as SAL and WOODS across various π values.

5.3 Experiments on Hard Benchmarks
Datasets. In the settings of standard benchmarks, the ID
and OOD samples are sourced from different datasets with
inherently distinct distributions, which actually indirectly re-
duces the difficulty of OOD detection. As shown in Table
1, many methods, including ours, have achieved exception-
ally high performance. To further demonstrate the advantages
of our LoD, we here curate more challenging benchmarks,
called hard benchmarks. Different from standard bench-
marks, the ID and OOD samples on hard benchmarks come
from the same dataset with different classes.

In specific, taking CIFAR10 as an example, we first ran-
domly select 6 classes as ID data and the remaining 4 classes
as OOD data. Then, similar to the splitting protocol of stan-
dard benchmarks, the training set of 6 ID classes is divided
into two halves (15,000 images per half). One half is used as
labeled ID data, while the other half is mixed with the data
from 4 OOD classes to create the unlabeled wild data. We
here select CIFAR10, CIFAR+10, CIFAR+50, and TinyIma-
geNet [Vaze et al., 2022] to curate the hard OOD benchmarks,
and more details can be found in Appendix B of supplemen-
tary materials.
Main Results. Since the four methods we compared do
not conduct the experiments on these benchmarks, we re-
produce the results according to the source codes provided
by them. Table 2 reports the detailed results on hard bench-
marks. Across all datasets and under various π values, our
LoD achieves better FPR95 and AUROC performance com-
pared to existing methods, indicating that its OOD detection
has stronger generalization. Notably, compared to the SOTA
baseline SAL [Du et al., 2024], our method reduces FPR95
by substantial margins of 5.77%, 6.22%, and 6.80% on av-
erage when π = 0.1, 0.5, 0.9, respectively. Especially on
CIFAR10, where LoD outperforms SAL more than 10% in
case of FPR95. In particular, on the most challenging Tiny-
ImageNet, LoD consistently surpasses SAL by a large mar-
gin of 4.84%, 4.75%, and 5.14% in terms of AUROC when
π = 0.1, 0.5, 0.9, respectively. Besides, our LoD also main-
tains competitive ID classification accuracy compared to the
SOTA baseline, comprehensively demonstrating the effec-
tiveness of our LoD.

5.4 Experiments on Different Ratios and Epochs
Results on Different Ratios of |Btrain

in |/|Bwild|
According to Section 4.1, the larger the ratio |Btrain

in |/|Bwild|,
the more dominant the labeled ID data in Dtrain

in and the OOD
data in Dwild are in model learning, thus leading to bet-
ter model performance. To verify this, we conduct experi-
ments in different ratios of |Btrain

in |/|Bwild|. Figure 4 shows
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Figure 4: Experiments in different rations (|Btrain
in |/|Bwild|) on stan-

dard benchmarks (dashed lines) and hard benchmarks (solid lines).

the results. As the ratio increases, the model performance
consistently improves across all benchmarks, strongly sup-
porting our claim. Considering computational efficiency,
|Btrain

in |/|Bwild| is set to 3 : 1 in all of our experiments.
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Figure 5: The impacts of training epochs on results respectively in
standard and hard benchmarks.

Impact of Epoch in Early-learning Succeeds
As shown in Proposition 1, the early-learning succeeds is the
key to our LoD. To clearly demonstrate the appropriate num-
ber of training epochs, we conduct the epoch experiments on
standard benchmark (take Textures as an example) and hard
benchmark (take CIFAR10 as an example) respectively. Fig-
ure 5 shows the results, and we can observe a steady per-
formance improvement in our LoD from 100 to 500 train-
ing epochs. At first glance, this phenomenon seems inconsis-
tent with the early-learning succeeds in the traditional label-
noise learning field, which is usually shorter. However, please
note that in our work setting, the label-noise ratio is con-
trolled within an appropriate range by controlling the ratio
of |Btrain

in |/|Bwild|, meaning that correctly labeled samples all
along dominate the network’s learning. This further verifies
the operability of LoD due to the long period early-learning
succeeds. Considering efficiency issues, the training epochs
of all experiments in this paper are set to 100 epochs.

6 Conclusion
In this paper, we innovatively propose a loss-difference OOD
detection framework by intentionally label-noisifying unla-
beled wild data, which ingeniously transforms the OOD fil-
tering problem in unlabeled wild data into a label-noise learn-
ing problem with controllable label-noise ratio. Importantly,
LoD not only effectively addresses the model-bias issue com-
monly associated with existing methods, but also circumvents
the threshold selection dilemma inherent in these approaches.
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A Detailed Proof
To prove Proposition 1, we first reintroduce Lemma 1 from
[Liu et al., 2020a] and Proposition 1 as follows:
Lemma 1 (Early-learning succeeds). Denote by {θt} the it-
erates of gradient descent with step size η. For any ∆ ∈
(0, 1/2), there exists a constant δ∆, depending only on ∆,
such that if δ ≤ δ∆, then with high probability 1 − o(1),
there exists a T = Ω(1/η) such that: for all t < T , we have
∥θt − θ0∥ ≤ 1 and

−∇LCE(θt)
Tv/∥∇LCE(θt)∥ ≥ 1/6.

Proposition 1. Let li denote the loss value of each sample
in Dwild, which is bounded by R. lin = 1

|Dwild
in |

∑
i∈Dwild

in
li and

lout =
1

|Dwild
out |

∑
i∈Dwild

out
li respectively denote the mean losses

of ID and OOD sets from unlabeled wild data Dwild, and n =
|Dwild

in | + |Dwild
out |. Under the Lemma 1, with high probability,

we have

lin − lout ≥ 1− 2e−θT v+ 1
2∥θ∥

2δ2 −O(
R√
n
).

Proof. Lemma 1 indicates that under the condition of noise
level ∆, the model parameters θ update along the proper gra-
dient direction during the early learning stage. This means,
during this period, the loss curves of ID (label-noise) and
OOD (label-clean) samples in test-set will have significantly
different characteristics, with larger loss values and greater
fluctuations for ID samples versus smaller loss values and
smaller fluctuations for OOD ones. Next, we analyze the
mean loss gap between ID (label-noise) samples in Dwild

in and
OOD (label-clean) samples in Dwild

out during this stage. Fol-
lowing [Yue and Jha, 2024], we adopt sigmoid function as the
activation function for the network outputs. For each sample
(xi, yi), we have

p(yi = 1) = sig(θTxi) =
1

1 + e−θTxi
,

p(yi = −1) = 1− p(yi = 1).

Let x = v+zi, where zi ∼ N (0, σ2Id×d). For each sample
xi ∈ Dwild

out (label-clean), we use log for its loss, and have

li(θ) = log(1 + e−θT (v+zi)) ≤ e−θT (v+zi).

Similarly, for each sample xj ∈ Dwild
in (label-noise), we have

lj(θ) = log(1 + eθ
T (v+zi)) ≥ 1− e−θT (v+zi).

Taking the expectation on the difference between OOD
(label-clean) and ID (label-noise), we have

E[li(θ)−li(θ)] = E[li(θ)]−E[lj(θ)] ≥ 1−2·E[e−θT (v+z)].

Note that the term 1−2·E[e−θT (v+z)] bounds the loss gap be-
tween OOD (label-clean) and know-class (label-noise) sam-
ples, and it is independent of the label type. Since

E[e−θT (v+z)] = e−θT v ·E[e−θT z] = e−θT v ·e 1
2∥θ∥

2σ2

. (9)

Eq.(1) indicates that the smaller the σ or the projection θ has
on v, the larger the expected loss gap. Interestingly, Lemma 1
ensures that we can obtain a good θ at least within T epochs.
Define the mean losses of ID (label-noise) samples and OOD
(label-clean) samples as follows:

lin =
1

|Dwild
in |

∑
i∈Dwild

in

li, lout =
1

|Dwild
out |

∑
i∈Dwild

out

li.

By Hoeffding’s Inequality on bounded variables and the
Union Bound, with probability ≥ 1− δ, we have

lin ≥ E[lin]−O(
R√
|Dwild

in |

√
log

1

δ
). (10)

and

lout ≤ E[lout] +O(
R√
|Dwild

out |

√
log

1

δ
). (11)

According to Eq.(2) and Eq.(3), we have

lin − lout ≥ 1− 2e−θT v+ 1
2∥θ∥

2δ2 −O(
R√
n
).

B Details in Hard Benchmarks
To further demonstrate the advantages of our LoD, we con-
duct experiments on curated hard OOD benchmarks includ-
ing CIFAR10, CIFAR+10, CIFAR+50, and TinyImageNet.
The details of these benchmarks are as follows:

• CIFAR10. CIFAR10 [Krizhevsky, 2009] contains 10
classes, where 6 classes are randomly selected as in-
distribution (ID) classes, and the remaining 4 classes are
used as out-of-distribution (OOD) classes.

• CIFAR+10 & CIFAR+50. In this set of experiments,
4 classes from CIFAR10 are randomly selected as ID
classes, and 10/50 non-overlapping classes randomly
selected from CIFAR100 [Krizhevsky, 2009] are OOD
classes.



Methods
OOD Dataset

ACCSVHN Places LSUN-Crop LSUN-Resize Textures Average
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

With Pin only
MSP (ICLR’17) 48.49 91.89 59.48 88.20 30.80 95.65 52.15 91.37 59.28 88.50 50.04 91.12 94.84
ODIN (ICLR’18) 33.35 91.96 57.40 84.49 15.52 97.04 26.62 94.57 49.12 84.97 36.40 90.61 94.84
Mahalanobis (NeurIPS’18) 12.89 97.62 68.57 84.61 39.22 94.15 42.62 93.23 15.00 97.33 35.66 93.34 94.84
Energy (NeurIPS’20) 35.59 90.96 40.14 89.89 8.26 98.35 27.58 94.24 52.79 85.22 32.87 91.73 94.84
CSI (NeurIPS’20) 17.30 97.40 34.95 93.64 1.95 99.55 12.15 98.01 20.45 95.93 17.36 96.91 94.17
ReAct (NeurIPS’21) 40.76 89.57 41.44 90.44 14.38 97.21 33.63 93.58 53.63 86.59 36.77 91.48 94.84
KNN (ICML’22) 24.53 95.96 25.29 95.69 25.55 95.26 27.57 94.71 50.90 89.14 30.77 94.15 94.84
KNN+ (ICML’22) 2.99 99.41 24.69 94.84 2.95 99.39 11.22 97.98 9.65 98.37 10.30 97.99 93.19
DICE (ECCV’22) 35.44 89.65 46.83 86.69 6.32 98.68 28.93 93.56 53.62 82.20 34.23 90.16 94.84
ASH (ICLR’23) 6.51 98.65 48.45 88.34 0.90 99.73 4.96 98.92 24.34 95.09 17.03 96.15 94.84

With Pin and Pwild
OE (ICLR’19) 0.85 99.82 23.47 94.62 1.84 99.65 0.33 99.93 10.42 98.01 7.38 98.41 94.07
Energy(w/OE) (NeurIPS’20) 4.95 98.92 17.26 95.84 1.93 99.49 5.04 98.83 13.43 96.69 8.52 97.95 94.81
WOODS (ICML’22) 0.15 99.97 12.49 97.00 0.22 99.94 0.03 99.99 5.95 98.79 3.77 99.14 94.84
SAL (ICLR’24) 0.02 99.98 2.57 99.24 0.07 99.99 0.01 99.99 0.90 99.74 0.71 99.78 93.65
LoD (Ours) 0 100 1.72 99.52 0 100 0 100 0.66 99.90 0.48 99.88 94.06

Table 3: Evaluation results of FPR95↓ (%), AUROC↑ (%) and ACC↑ (%) on standard benchmarks. CIFAR10 is ID dataset, and bold numbers
highlight the best results.

Methods
OOD Dataset

ACCSVHN Places LSUN-Crop LSUN-Resize Textures 25K RAND.IMG. Average
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

π=0.1
OE (ICLR’19) 77.74 82.84 60.70 84.02 31.06 93.99 55.74 88.45 57.39 88.27 50.95 87.44 56.53 87.51 83.04
Energy(w/OE) (NeurIPS’20) 55.89 90.19 49.08 88.03 22.74 94.94 34.10 93.42 39.33 90.63 48.91 88.12 40.23 91.44 90.02
WOODS (ICML’22) 4.90 98.70 18.53 96.27 1.94 99.53 5.73 98.78 17.71 96.17 10.37 96.92 9.76 97.89 94.50
SAL (ICLR’24) 5.83 97.63 17.96 96.23 2.50 98.77 5.67 98.56 8.44 97.93 8.95 97.40 8.08 97.82 93.65
LoD (Ours) 4.41 98.96 11.82 97.50 1.84 99.56 5.61 98.63 4.66 99.10 8.68 97.59 5.67 98.75 93.99

Table 4: Evaluation results of FPR95↓ (%), AUROC↑ (%) and ACC↑ (%) on unseen datasets. We use CIFAR10 as ID and a subset (25K
images) of 300K Random Images as wild OOD data. Bold numbers highlight the best results

• TinyImageNet. TinyImageNet is a subset derived from
ImageNet [Deng et al., 2009] with a total of 200 classes,
of which 20 classes are randomly selected as ID classes
and the rest 180 classes are treated as OOD classes.

Please note that, since ID and OOD are randomly divided,
to mitigate the effects of randomness, each dataset is evalu-
ated across five distinct "ID/OOD" splits following [Neal et
al., 2018; Vaze et al., 2022], and the results are averaged.
Moreover, similar to standard benchmarks [Katz-Samuels et
al., 2022; Du et al., 2024], we use 70% of data from the OOD
classes as the OOD part of the unlabeled wild data.

C Additional Results on CIFAR10
In this part, we utilize CIFAR10 as the ID dataset to evalu-
ate our LoD under π = 0.1. In addition to the four methods
utilizing wild data compared in the main paper, we here also
evaluate methods that rely solely on labeled ID data (Pin only)
including MSP [Hendrycks and Gimpel, 2016], ODIN [Liang
et al., 2017], Mahalanobis [Lee et al., 2018], Energy [Liu et
al., 2020b], CSI [Tack et al., 2020], ReAct [Sun et al., 2021],
KNN and KNN+ [Sun et al., 2022], DICE [Sun and Li, 2022]
and ASH [Djurisic et al., 2022]. The detailed results are pre-
sented in Table 3, which demonstrate that methods trained
using both ID and wild data exhibit significantly better per-
formance compared to those trained solely with ID data. Ad-
ditionally, compared with methods utilizing Pwild, LoD con-

tinues to exhibit superior performance, outperforming other
SOTA methods in terms of FPR95 and AUROC metrics. Fur-
thermore, LoD achieves competitive ID classification accu-
racy, either matching or exceeding the performance of leading
SOTA methods such as SAL and WOODS.

D Additional Results on Unseen OOD
Datasets

In this part, we follow [Du et al., 2024] and evaluate our LoD
on unseen OOD datasets, which are different from the OOD
data we use in the wild. Table 2 and Table 3 report the results.

In Table 2, we employ CIFAR10 as the ID dataset. As for
the wild OOD data, [Du et al., 2024] utilizes the full 300K-
image dataset. However, we argue that this setting seems in-
appropriate due to a significant imbalance: the ID data in the
wild data contains only 25K images, while the OOD coun-
terpart comprises 300K images–12 times larger than the ID
data. Therefore, we randomly sample a subset of 25K images
from the 300K as the wild OOD data. The detailed results
presented in Table 4 demonstrate that our LoD consistently
outperforms SOTA baselines such as SAL and WOODS on
the unseen OOD datasets, highlighting the effectiveness of
our method.

In Table 3, we employ CIFAR100 as ID data. As for
the wild OOD data, we follow [Du et al., 2024] and uti-
lize TinyImageNet-crop (TINc)/TinyImageNet-resize (TINr)



dataset as the wild OOD data using during training and
TINr/TINc as the unseen OOD data during testing. The re-
sults in Table 5 demonstrate the advantages of our LoD.

Methods
OOD Dataset

TINr TINc
FPR95 AUROC FPR95 AUROC

STEP (NeurIPS’21) 72.31 74.59 48.68 91.14
TSL (MM’23) 57.52 82.29 29.48 94.62
SAL (ICLR’24) 43.11 89.17 19.30 96.29
LoD (Ours) 23.54 92.81 9.67 98.10

Table 5: Evaluation results of FPR95↓ (%), AUROC↑ (%) on un-
seen datasets. CIFAR100 is ID, and bold numbers highlight the best
results.

E Additional Results on Different Networks

To verify the applicability of LoD, the data-centric method,
this part conducts experiments on different network structures
on CIFAR10 and CIFAR+10. Table 4 reports the results, and
we can find these networks mentioned here are all suitable for
our LoD. In particular, LoD seems to follow scaling laws: the
larger the network, the better it performs.

Networks(♯ params)
CIFAR10 CIFAR+10

FPR95 AUROC ACC FPR95 AUROC ACC

WideResNet-40-2 (2.2M) 2.56 99.40 96.34 1.50 99.62 97.29
ResNet18 (11.2M) 2.47 99.44 96.46 0.96 99.72 97.32
ResNet34 (21.3M) 2.29 99.51 96.48 0.90 99.73 97.39

Table 6: Evaluation results of FPR95↓ (%), AUROC↑ (%) and
ACC↑ (%) on different networks on hard benchmarks.

Ratios Places Textures
FPR95 AUROC ACC FPR95 AUROC ACC

1:6 10.50 98.07 72.9 8.88 97.64 74.10
1:3 8.21 98.36 73.14 8.09 98.00 73.58
1:1 4.08 99.12 73.06 6.17 98.53 74.06
3:1 3.34 99.16 72.21 4.79 98.87 73.30
6:1 3.91 98.95 71.38 3.63 99.14 73.22

Table 7: Detailed results of FPR95↓ (%), AUROC↑ (%) and ACC↑
(%) across different ratios on standard benchmarks.

F Detailed Results on Different Ratios
|Btrain

in |/|Bwild|
Table 7 reports the detailed results in different ratios on rep-
resentative standard benchmark Places and Textures, while
Table 8 reports the detailed results on CIFAR10 and Tiny-
ImageNet. As the ratio |Btrain

in |/|Bwild| increasing, the perfor-
mance of our method consistently improves.

Ratios CIFAR10 CIFAR+10
FPR95 AUROC ACC FPR95 AUROC ACC

1:6 3.07 99.30 96.18 8.30 97.66 97.35
1:3 2.78 99.34 96.27 7.04 98.22 97.25
1:1 2.57 99.38 96.28 2.52 99.31 97.25
3:1 2.56 99.40 96.34 1.50 99.62 97.29
6:1 2.33 99.44 96.21 1.13 99.73 97.34

Table 8: Detailed results of FPR95↓ (%), AUROC↑ (%) and ACC↑
(%) across different ratios on hard benchmarks.

Ratios Textures CIFAR10
FPR95 AUROC ACC FPR95 AUROC ACC

100 4.79 98.87 73.30 2.56 99.40 96.34
200 4.17 99.07 72.86 2.37 99.45 96.28
300 4.02 99.05 72.14 2.36 99.45 96.28
400 3.82 99.05 72.19 2.33 99.46 96.30
500 3.60 99.09 72.28 2.31 99.56 96.30

Table 9: Detailed results of FPR95↓ (%), AUROC↑ (%) and ACC↑
(%) in different training epochs.

G Detailed Results on the Impact of Epoch in
Early-learning Succeeds

Table 9 reports the detailed results on the impact of training
epochs in early-learning success. The results demonstrate a
consistent performance improvement in our LoD model as
the number of training epochs increases from 100 to 500.


	Introduction
	Related Works
	Out-of-Distribution Detection
	Training Neural Networks with Label Noises

	Methodology
	Problem Formulation
	Loss-Difference OOD Detection Framework
	Loss-difference OOD Filtering Module
	OOD Detector Learning Module


	Theoretical Analysis
	Mitigation of The Model Bias
	Discriminability between ID and OOD CE Mean-Losses

	Experiments
	Implementation Details
	Experiments on Standard Benchmarks
	Experiments on Hard Benchmarks
	Experiments on Different Ratios and Epochs
	Results on Different Ratios of |Bintrain|/|Bwild|
	Impact of Epoch in Early-learning Succeeds


	Conclusion
	Detailed Proof
	Details in Hard Benchmarks
	Additional Results on CIFAR10
	Additional Results on Unseen OOD Datasets
	Additional Results on Different Networks
	Detailed Results on Different Ratios |Bintrain|/|Bwild|
	Detailed Results on the Impact of Epoch in Early-learning Succeeds

