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Abstract— Images captured in low-light conditions often induce
the performance degradation of cutting-edge face recognition
models. The missing and wrong face recognition inevitably makes
vision-based systems operate poorly. In this article, we propose
Low-FaceNet, a novel face recognition-driven network, to make
low-light image enhancement (LLE) interact with high-level
recognition for realizing mutual gain under a unified deep learn-
ing framework. Unlike existing methods, Low-FaceNet uniquely
brightens real-world images by unsupervised contrastive learning
and absorbs the wisdom of facial understanding. Low-FaceNet
possesses an image enhancement network that is assembled by
four key modules: a contrastive learning module, a feature
extraction module, a semantic segmentation module, and a face
recognition module. These modules enable Low-FaceNet to not
only improve the brightness contrast and retain features but
also increase the accuracy of recognizing faces in low-light
conditions. Furthermore, we establish a new dataset of low-light
face images called LaPa-Face. It includes detailed annotations
with 11 categories of facial features and identity labels. Extensive
experiments demonstrate our superiority against the state-of-
the-art methods of both LLE and face recognition even without
ground-truth image labels. Our code and dataset are available
at https://github.com/fanyihua0309/Low-FaceNet.

Index Terms— Contrastive learning, face recognition, Low-
FaceNet, low-light image enhancement, semantic segmentation.
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I. INTRODUCTION

FACE images captured in low-light conditions often suffer
from unfavorable visibility and color bias [1], [2], which

not only affect human visual quality but also drastically worsen
the performance of face recognition networks [3]. Such degra-
dation has a negative impact on the image-based measurement
methods and advanced vision tasks [4], [5]. One promising
solution to mitigate the performance drop in low-light condi-
tions is to employ the supplementary lighting. However, not all
scenarios support it, since practical constraints such as cost,
power limitations, and the need for covert operations often
make the supplementary lighting unfeasible. Low-light image
enhancement (LLE) aims at brightening the illumination to
make the information hidden in the dark visible and improve
image quality. LLE is drawing much attention in multiple
emerging computer vision areas, especially in the field of
face recognition. As shown in Fig. 1, the unmanned patrol
vehicle is often developed for surveillance and campus safety
protections in university. When going on patrol at night, it may
suffer from the inaccurate face recognition due to the low-light
conditions. If equipping the vehicle with LLE techniques, it is
able to enhance nighttime images captured by the onboard
camera and simultaneously perform facial recognition. This
enables improved nighttime surveillance and campus safety
protections. However, we observe that even the best face
recognition models struggle with low-light face images. While
existing LLE models can improve these low-light images, the
“re-lighted” faces may not serve face recognition successfully.

Why Does It Happen? There are mainly three reasons.
1) Existing LLE methods concentrate on pixel-level loss

functions and fail to model the geometric and semantic
information. They will cause uneven exposure and unre-
alistic details, damaging the recognition performance.

2) They exploit normal-light images to guide the optimiza-
tion process while neglecting low-light images which are
an effective training source.

3) LLE models are typically applied as an independent
task, which cannot perceive the downstream applica-
tion. Therefore, we attempt to investigate the benefit
of exploiting facial semantics and low-light images
as negative samples simultaneously for LLE and face
recognition. To this end, we propose a task-driven
paradigm to make high-level recognition interact with
low-level image enhancement. The two tasks realize
mutual gain under a unified deep learning framework.
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Fig. 1. Diagram of an unmanned patrol vehicle at NUAA. The onboard
camera is capable of capturing images and empowering intelligent decision–
making. However, nighttime images inevitably suffer from poor visibility
and unknown noise. Such degradation negatively impacts vision-based mea-
surement systems and possibly even puts traffic safety at risk. To mitigate
this, Low-FaceNet can potentially help achieve visually pleasing and realistic
enhanced outputs to facilitate face recognition.

A variety of conventional and deep learning-based tech-
niques are developed to enhance the visual perception of
low-light images. The conventional ones are often based on
histogram equalization (HE) [6] or the Retinex theory [7], [8].
Although these methods are simple and easy to implement,
hand-crafted priors do not always hold in them, leading to the
unrealistic enhancement and a heavy computing burden.

The compelling performance of deep learning has shed light
on the LLE field. Learning-based methods can fall into three
categories: supervised [9], [10], [11], [12], unsupervised [13],
[14], and semi-supervised methods [15]. Recent years have
witnessed the impressive success of supervised methods based
on synthetic data. However, collecting large-scale diverse
paired data for supervised learning is often unrealistic, and
training on synthetic datasets may cause overfitting and poor
generality. Besides, how to achieve stable network training
and establish connections between different domains remain
intricate for semi-supervised and unsupervised methods. Fur-
thermore, previous methods usually only utilize normal-light
images as positive samples for training, ignoring the large
amount of accessible underexposed images and semantic guid-
ance that can facilitate the LLE task.

Most of existing LLE methods cannot fully connect
LLE with face recognition. In contrast, we propose a face
recognition-driven strategy that guides the model to work
well for both improving image quality and enhancing recog-
nition accuracy. Using unpaired images from normal-light
and low-light conditions as positive and negative exam-
ples, we build a more general and discriminative network.
The guidance of semantic information guarantees relatively
even exposure of each part of the face. We further imple-
ment face recognition-driven embedding to promote both
the low-level LLE task and the high-level recognition task
and finally propose Low-FaceNet. Low-FaceNet contains an
image enhancement network and four modules, with LLE
acting as four specific constraints: learning contrasts, retaining
features, smoothing brightness guided by semantics, and rec-
ognizing faces. Together, these constraints guarantee consistent
lighting, color preservation, and improvements in recognition
performance. Low-FaceNet achieves a visually better result,
effectively supporting the face recognition task (see Fig. 2).

To facilitate the training of Low-FaceNet and encour-
age more works in this field, we build and release a new

Fig. 2. Image enhancement results of a real-world low-light example.
(a) Input low-light image, and the enhancement results of (b) LIME [7],
(c) RetinexNet [10], (d) SSIENet [16], (e) RUAS [17], (f) Zero-DCE++ [18],
(g) SCL-LLE [19], and (h) our Low-FaceNet. By leveraging facial semantics
and low-light images, which are often ignored in previous approaches, our
Low-FaceNet achieves results that are not only brighter but also more visually
appealing.

face-oriented LLE dataset. It contains paired normal-light/low-
light face images with different race, age, expression, and pose.
And each image has a corresponding semantic label map and
identity label.

Experiments show clear improvements of Low-FaceNet over
its competitors on LLE and face recognition. In summary, our
contributions are threefold.

1) We propose Low-FaceNet, a task-driven paradigm to
promote both low-level low-light image enhancement
and high-level face recognition.

2) We exploit unpaired normal-light/low-light images
as positive/negative samples. By making low-light
image enhancement interact with facial understanding,
we ensure the realistic restoration of face images.

3) We create LaPa-Face, a specialized benchmark for
low-light image enhancement geared toward face recog-
nition. It includes both low-light and normal-light
images, with detailed semantic annotations and identity
labels. LaPa-Face provides the vision community with
a new dataset of low-light conditions.

II. RELATED WORK

A. Low-Light Image Enhancement

LLE has been extensively studied to improve the visibility
and reveal the hidden information. Existing solutions generally
fall into prior-based and learning-based methods.

Traditional methods typically rely on hand-crafted priors,
such as HE [6] and Retinex priors [7]. Retinex theory [20]
which assumes that an image can be decomposed into
reflectance and illumination, has gained significant attention.
Mathematically, a given image can be expressed by

S = R × I (1)

where S denotes the source image, R and I denote the
reflectance and illumination, respectively, and × denotes the
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pixel-wise product. Enhanced results are obtained by further
adjusting the two components. Albeit these traditional meth-
ods enhance image brightness to some extent, they often
exhibit a limited practical capacity under complex and diverse
real-world scenes.

In recent years, deep learning-based methods have produced
promising results in LLE. Supervised learning approaches
utilize paired normal-light and low-light images for train-
ing. Retinex-based methods [10], [21] incorporate Retinex
theory to decompose the images and refine the decomposed
components to obtain the final enhanced images. In contrast,
end-to-end methods [9], [22], [23], [24] directly learn the map-
ping from low-light input images to corresponding enhanced
images. Despite their decent performance, the domain gap
between real and synthetic data often results in poor generality
and potential overfitting when using synthetic training data.

In practice, it is challenging or even impractical to
obtain paired normal-light/low-light data of the same scene.
To address this issue, RUAS [17] adopts a Retinex-inspired
unrolling scheme with a network-searched architecture.
Zero-DCE [14] formulates LLE as an image-specific curve
estimation task and benefits from a set of well-designed
nonreference loss functions. SCL-LLE [19] removes
pixel-correspond paired training data through an effective
semantically contrastive learning paradigm. However,
achieving stable network training and creating cross-domain
information relations remain nontrivial. In this work, inspired
by [19], we design a simple Retinex-based enhancement
network but gain superior performance by leveraging unpaired
training data and semantic information.

B. Face Recognition

Face recognition is a critical problem in the realm of com-
puter vision as it has a wide range of real-world applications,
such as access control, face unlocking, security surveillance,
financial payment, etc. A typical face recognition pipeline
involves the following four main steps.

1) Face Detection: This initial step aims at estimating the
bounding box of the face in a given image. General
object detection algorithms [25], [26], [27], [28] have
shed light on the development of face detectors.

2) Facial Landmark Detection: The goal of this step is
to identify key facial points, such as eyes, nose, and
mouth [29]. These landmarks hold great importance
in face alignment, contributing to recognition accuracy
improvements.

3) Facial Features Extraction: This phase focuses on
extracting essential facial features by taking advantage
of effective network architectures.

4) Facial Features Classification: Facial features extracted
in the previous step are employed for classification
through various classifier algorithms.

Compared with general face recognition, limited research
efforts have been dedicated to face recognition in low-light
conditions. The prevailing method is to pre-process the low-
light images by existing LLE approaches, and then feed
the processed images into the subsequent recognition net-
work. Although the overall quality of low-light images is

improved, they do not necessarily guarantee an improvement
in recognition performance. Recent research [30], [31], [32]
also reveals that there is no straightforward cause-and-effect
relation between the visual quality of enhanced images and the
performance of high-level recognition tasks. In response to this
challenge, we embrace a recognition task-driven paradigm that
effectively bridges the gap between low-level enhancement
and high-level recognition and achieves recognition-friendly
enhancement.

III. METHODOLOGY

This section illustrates the details of our designed
Low-FaceNet for LLE. Section III-A reveals our Retinex-
based Enhance-Net network structure. The following
Sections III-B–III-E demonstrate the four modules and loss
terms adopted in the proposed framework at length.

Face recognition under adverse illumination conditions is
still challenging. Intuitively, it may get better performance
on the enhanced image. However, most of the previous LLE
methods overlook how facial semantics and underexposed
images can bring significant gain to both low-level enhance-
ment and high-level recognition. Besides, LLE is typically
applied as an independent pre-processing step, which might
be suboptimal for the ultimate goal. As far as we know,
few works pay attention to the improvement of recognition
performance after enhancement. The problem of how low-level
image processing could affect the high-level recognition task
is still not thoroughly studied. In this work, we offer a new
insight to investigate the logical relationship between LLE
and face recognition by showing the mutual influence between
them. We not only exploit facial semantics and underexposed
images to generate both brighter and more realistic images but
also propose a task-driven manner to solve both the low-level
image enhancement and high-level recognition problems in a
single unified framework.

As schematically illustrated in Fig. 3, Low-FaceNet is
congregated by an image enhancement network and four
key modules, i.e., a contrastive learning module, a feature
extraction module, a semantic segmentation module, and a
face recognition module. Since the joint framework includes
multiple modules dedicated to image enhancement, seman-
tic segmentation, and face recognition tasks, it inevitably
introduces more uncertainties to the training process if they
are initialized entirely randomly. To mitigate this challenge,
the semantic segmentation and face recognition network are
trained in advance and frozen during the learning process of
the image enhancement network. This strategy ensures fast
convergence and high performance of our method. Specifically,
given a low-light input, the image enhancement network is first
applied. Then the enhanced result is fed into the following
four modules, where LLE is converted into four constraints
for detail retention, color presentation, and exposure control.
We provide details of the framework in what follows.

A. Retinex-Based Enhance-Net

Retinex theory models the color perception of human
vision. It inspires us to integrate the strengths of model-based
and learning-based methods. We formulate LLE as the
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Fig. 3. Architecture of Low-FaceNet. Our network consists of an image enhancement network and four modules: a contrastive learning module, a feature
extraction module, a semantic segmentation module, and a face recognition module, which perform contrastive brightness restoration and feature retention,
semantic-guided smoothness, and face recognition, respectively.

combination of prior and learning, unfolding the update opti-
mization steps into a neural network. Whereas, recovering
two components from one single image is obviously an ill-
posed problem. Instead of simultaneously estimating these
two components in parallel, we alternatively resort to first
estimating the illumination component I and then derive the
reflectance component R by (1), where R is considered as the
enhanced image.

The network architecture of Retinex-based Enhance-Net is
illustrated in Fig. 3. We use simple convolution layers with
concatenation operations to form multiscale features, and the
intermediate connections compensate for the information loss
during convolutions. Notably, to avoid the denominator being
zero, the estimated illumination component I is adjusted by
I = clamp{I, 0.0001, 1}, which is the clipping operator to
drop the overflow value with the upper/lower bounds being
1/0.0001. We learn the residual representation of I followed
by a plus calculation instead of learning illumination directly,
which not only guarantees exposure control and steadiness but
also reduces the computational difficulty.

B. Contrastive Learning Module

Contrastive learning is enforced to learn a representation
by encouraging the positive pairs closer while keeping the
negative pairs further away. Therefore, our primary insight is
that the features extracted from the enhanced results and the
positive samples (i.e., normal-light images) should share some
mutual properties, while the enhanced results and the negative
samples (i.e., low-light images) should have a long distance
between their embeddings. In the consideration of flexibility,
the positive samples and negative samples can be randomly
selected in different scenes, which means they are unpaired
with each other. We enforce two contrastive constraints to learn
LLE in the deep feature space. The detailed descriptions are
provided below.

1) Feature CR: The goal is to learn a representation to pull
together positive pairs in the latent feature space and push apart
the representation between negative pairs. Inspired by [33],
we employ contrastive regularization (CR) to cluster the latent
feature space by

LCRfeature =

n∑
i=1

wi ·

∣∣Fi (Ie), Fi
(
Ip
)∣∣

|Fi (Ie), Fi (In)| + α
(2)

where Ie, Ip, and In refer to the enhanced image, positive
sample, and negative sample respectively. Fi denotes the
i th layer of features extracted by the pretrained VGG-16
model [34]. n means the total number of feature layers. wi

is a weight coefficient. α is a small constant to prevent the
denominator from being zero, which is set to 1 × 10−7.

2) Brightness CR: Additionally, the brightness CR which
has a similar form of Feature CR is proposed to brighten up
the illumination and further constrain the optimization by

LCRbrightness =

∣∣BIe , BIp

∣∣∣∣BIe , BIn

∣∣+ α
(3)

where B represents the brightness level of a given image. The
rest of the variables have the same meanings as above.

The total contrastive learning loss is formulated as

Lcont = λ f LCRfeature + λb LCRbrightness (4)

where λ f and λb represent two corresponding trade-off param-
eters. We set λ f = 0.62, and λl = 0.22 in experiments.

C. Feature Extraction Module

To enhance the flexibility of our method, we do not use
normal-light images as references to guide the training. In the
absence of reference images, well-defined nonreference con-
straints are the key to stable enhancement. Consequently,
we introduce three nonreference constraints, i.e., perceptual
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loss, color loss, and smooth loss. These constraints collectively
ensure that the enhanced images appear to be more perceptu-
ally natural, maintain natural color tones, and exhibit a smooth
overall structure with textural details.

1) Perceptual Loss: Perceptual Loss ensures the input and
output images to be perceptually consistent by

Lperceptual =
1

Cl Wl Hl

(
f l(Il)− f l(Ie)

)2
(5)

where f l(Il) denotes the feature f of the input Il in the layer
l, and f l(Ie) is the feature of the enhanced image Ie in the
layer l. Cl Wl Hl refers to the size of feature map in the layer l.
The features are extracted from a pre-trained VGG-16 model.

2) Color Loss: The color naturalness is one of the sig-
nificant concerns of LLE. Inspired by [35], we compute the
distance between the enhanced images and target images (i.e.,
positive samples) to measure the major color difference, which
is invariance to small distortions. To be specific, we first define
a fixed 2-D Gaussian blur operator, then compute the blur
version of the enhanced image and random image picked from
the positive samples, and finally compute L2 loss between the
two blur images, which can be denoted as

G(k, l) = A · exp

(
−

(k − µx )
2

2σx
−

(
l − µy

)2

2σy

)
Ieb(i, j) =

∑
k,l

Ie(i + k, j + l) · G(k, l)

Ipb(i, j) =
∑
k,l

Ip(i + k, j + l) · G(k, l)

Lcolor = ||Ieb − Ipb||
2
2

(6)

where G(k, l) refers to the 2-D Gaussian blur operator, A =
0.053, µx = µy = 0, σx = σy = 3. Ieb, and Ipb refer to the
corresponding blurred image of the enhanced image Ie and a
random positive sample Ip, respectively.

3) Smooth Loss: The smoothness property of illumination
is vital for LLE, which has been revealed in [17] and [36].
Therefore, we present a smooth loss to encourage our network
to output an illumination map with a smooth overall structure
and textural details, which can be expressed as

wk = exp

−
∑

c∈{R,G,B}

(
∇k I c

l

)2

2σ 2


Lsmooth =

K∑
k=1

wk ·

 ∑
c∈{R,G,B}

∇k I c
i


(7)

where c refers to the image channel in the RGB space. I c
l

refers to the cth channel of the input low-light image, and I c
i

refers to the cth channel of the illumination map learned by
our network. k denotes the gradient operation in kth direction,
and K = 24 denotes the total number of directions. σ = 0.1 is
the standard deviation for the Gaussian kernels.

The total feature loss is formulated as

L feat = λp Lperceptual + λc Lcolor + λs Lsmooth (8)

where λp, λc, λs represent several balancing hyperparameters.
We set λp = 1, λc = 0.05, and λs = 0.65 We set λ f = 0.62,
and λl = 0.22 in experiments.

D. Semantic Segmentation Module

The significance of semantic information guidance is a
broad consensus in LLE [19] and other low-level visual tasks.
Most of the existing LLE methods focus on pixel-level loss
functions and thus fail to adequately capture the geomet-
ric and semantic information, leading to unfavorable details
and uneven exposures. To alleviate such issues, we integrate
semantic information to promote the consistency of enhanced
face images. We primarily consider that elements belonging
to the same semantic category have an adjacent location and
should exhibit consistent brightness. To this end, we introduce
the semantic smooth loss to enhance the smoothness and con-
sistency within each semantic part. By default, the well-known
DeepLabv3+ [37] is employed as the semantic segmentation
network, which is pretrained on LaPa-Face and frozen during
the training process of our enhancement network. The seman-
tic smooth loss can be denoted as

Bs =
1
n

∑
i∈θs

(
Bi

Ie

)
Lseg =

S∑
s=1

∑
i∈θs

(
Bi

Ie
− Bi

s

)2
(9)

where s represents the sth category. S denotes the total number
of semantic categories. θs represents the collection of pixels
belonging to the category s. n is the total number of pixels
of θs . Bi

Ie
is the brightness level of the enhanced image at

the i th pixel. Bs is defined as the average brightness level in
the category s. That means all pixels of the same category
are pushed closer to the average brightness level, leading to
smoothness and consistency of each face part. As a result, the
enhanced image will be more smooth and more consistent in
the same semantic category, which is critical for avoiding local
uneven exposures.

E. Face Recognition Module

The pipeline of face recognition for a given image is
depicted in Fig. 4. The process begins with the construc-
tion of a face database and feature encoding. Subsequently,
we calculate the cosine distances between the feature of the
given image and the features of all faces within the database.
The identity associated with the feature that yields the largest
cosine distance is considered the outcome of the recognition
process.

In the realm of face recognition in low-light conditions,
existing LLE methods are often executed as an indepen-
dent stage and are thus poorly related to the downstream
tasks. Although the pre-processed low-light images exhibit
enhanced visual quality, they are not guaranteed to bring
gains in high-level computer vision tasks. We attribute this
phenomenon to the divergent objectives of enhancement and
recognition, which can cause potential conflicts between them.
Images generated by enhancement models may contain some
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Fig. 4. Pipeline of face recognition. We first establish the face database
and implement feature encoding. Given a face image, the face detection
network is initially applied to locate the position of the face. It then proceeds
to align and crop the facial area for further processing. Subsequently, the
pre-processed image is fed into the face recognition network to extract
feature encodings. Finally, feature comparisons are executed to predict the
identity of the detected face. In our framework, we incorporate the recognition
network and exploit a task-driven paradigm to make low-level LLE interact
with high-level recognition and thus bring desirable accuracy improvements.
(a) face database encoding and (b) face recognition flow.

noise that is invisible to human eyes and inadvertently lose
critical details, thus hindering the performance of subsequent
recognition models [32]. How to build a positive correlation
between low-level enhancement and high-level recognition,
especially in the absence of normal-light image labels, is
essential yet under-studied in this field.

In response to this challenge, inspired by the insight
of [31], we exploit a face recognition-driven strategy to build
a positive connection between the LLE and the recognition
task to achieve a win-win situation under a unified end-
to-end framework. The task-driven paradigm is executed by
the introduction of a high-level recognition task loss func-
tion into the training process of the low-level enhancement
network. As illustrated in Fig. 3, given a low-light image,
the image enhancement network is applied to obtain the
enhanced features. In one direction, the enhanced features
potentially promote face recognition performance improve-
ments. In the opposite direction, face recognition performance
plays a crucial role in guiding the learning process of the
image enhancement network. In this manner, the bidirectional
interaction between image enhancement and face recognition
enforces the enhancement process to be more recognition-
friendly. Our method is optimized not only for human-centric
visibility but also for the high-level task models simultane-
ously. We formulate the face recognition loss as

L face = −

F∑
f=1

(
p f ∗ log q f

)
(10)

where F is the total number of faces in the database. p f

and q f represent the ground truth and the predicted identity,
respectively. Notably, similar to the setting of the semantic seg-
mentation module, the face recognition network is pretrained
in advance and then frozen during the optimization of the
enhancement network, out of consideration for reducing the
training uncertainties and difficulties. Concretely, we employ
RetinaFace [38] pretrained on the WIDER FACE dataset [39]

TABLE I
DESCRIPTIONS OF DATASETS

Fig. 5. Several examples of the proposed LaPa-Face dataset, which has a high
degree of variability in race, age, pose, occlusion, expression, and appearance.
The LaPa-Face dataset consists of 4000 normal-light/low-light images with
11-category semantic label maps and identity labels of 2185 individuals.

as the detection network, and FaceNet [40] pretrained on the
CASIA-WebFace dataset [41] as the recognition network.

Overall, the total loss function is formulated as

L total = Lcont + L feat + Lseg + L face. (11)

IV. DATASET

A. Observation and Consideration

To narrow the gap between the LLE task and the face
recognition task, we exploit a task-driven paradigm to promote
both tasks in an end-to-end manner. And the semantic infor-
mation is leveraged to further boost the performance of our
model. To satisfy the training requirements of Low-FaceNet
and provide support for follow-up research, we note that the
training dataset should have the following properties.

1) Low-light images for the LLE task.
2) Face images for face recognition applications.
3) Each individual should contain at least one face image.

It is better if the same individual contains multiple face
images with different expressions and postures.

4) Each image should have a corresponding semantic
segmentation ground truth for integrating semantic
information.

To the best of our knowledge, there are no publicly
available benchmarks that satisfy all the above properties.
We finally pick Landmark guided face Parsing, i.e., LaPa [42]
as the source dataset to establish our new benchmark, termed
LaPa-Face. We observe that there are several problems or
limitations of LaPa.
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1) It only contains normal-light images, lacking required
low-light images.

2) There are numerous errors in individuals’ identity labels.
For instance, the same individual is labeled with differ-
ent identities or different individuals are labeled with the
same identity.

3) Multiple images of the same individual are mostly
obtained by data enhancement, limiting the face recog-
nition performance.

B. Synthetic Details

Based on the aforementioned observations, the first step
is to manually pick and correct the identity labels, which
is extremely time-consuming. But the correction results are
not guaranteed to be completely accurate, due to the diverse
expressions and postures. The second step is to synthesize
low-light images based on normal-light images. We apply a
linear transformation to obtain synthetic low-light images. The
step-by-step description of the synthesis process is provided
in Algorithm 1. In particular, we first discard images with a
too-small size to facilitate training, then take a random number
in the given interval as darken ratio to more closely approxi-
mate the real low-light environment with multiple brightness
levels. Next, we apply pixel-wise multiplication by ratio to
obtain the low-light image. After generating the whole set of
low-light images, we calculate the average brightness of the
set to verify if the average brightness meets the requirement by

l = 0.299r + 0.587g + 0.114b (12)

where l refers to the average brightness of the image, r ,
g, and b denote three image channels, respectively. If the
average brightness is not satisfied, the ratio interval needs to
be fine-tuned and then re-synthesize the set.

LaPa-Face contains 4000 normal-light/low-light image pairs
with large variations in race, age, pose, and facial expression.
Each image has semantic annotations (11-category semantic
label map) and identity labels (2185 individuals). Some exam-
ples from LaPa-Face are found in Fig. 5, and the total dataset
has been released for public use and evaluation.

As for contrastive learning samples, 360 images are chosen
from the CelebA-HQ dataset [43] as positive samples, and the
negative samples are obtained by Algorithm 1, thus a total of
720 images are adopted as the contrast dataset. The other test
datasets are synthesized in the same way with the fine-tuned
ratio interval. More detailed descriptions of our datasets are
tabulated in Table I.

V. EXPERIMENT

In this section, we compare both the LLE and recognition
performance of our Low-FaceNet with seven state-of-the-art
approaches on several synthetic datasets and in wild scenarios.
The results of the ablation study are presented to verify the
effectiveness of each module in Low-FaceNet.

A. Implementation Details

1) Training Details: The experiments are implemented on
Pytorch with an NVIDIA GeForce RTX 3060 GPU. The model
is trained by Adam optimizer with a fixed learning rate of

Algorithm 1 Generation of the Set of Low-Light
Images
Input: The set of normal-light images with total

number S: Sethigh = (Ihigh1 , Ihigh2 , . . . , IhighS ),
minimum image size (height, width), darken
ratio (ratiomin , ratiomax ), required brightness
L

Output: The corresponding set of low-light images
with total number K :
Setlow = (Ilow1 , Ilow2 , . . . , IlowK ), K ≤ S

1 K ← 0
2 for Ihigh ∈ Sethigh do
3 if Size(Ihigh) < (height, width) then
4 delete Ihigh from Sethigh , continue ▷ discard

images with very small size
5 else
6 ratio← Random(ratiomin, ratiomax )

7 Ilow ← Ihigh ◦ ratio ▷ darken process Ihigh to
generate Ilow

8 l ← 0.299r + 0.587g + 0.114b ▷ calculate the
average brightness of Ilow

9 save Ilow to Setlow

10 K ← K + 1
11 end
12 end
13 if Average(l) ∈ (L − 0.01, L + 0.01) then
14 return Setlow with total number K ▷ the average

brightness meets the requirement
15 else
16 clear Setlow, fine-tune (ratiomin , ratiomax ), go to

line 1 ▷ regenerate Setlow

17 end

1 × 10−4 for 100 epochs, and the batch size is set to 2. The
training images are resized into 384 × 384 pixels. For the
ablation study experiments, we reduce the number of epochs
to 50 to save computational resources while still allowing the
model to adequately fit the training data.

2) Evaluation Metrics: We assess the performance across
both the image enhancement and face recognition tasks.
Regarding image quality assessment, we employ a combi-
nation of traditional and deep learning-based metrics. For
full-reference assessment, we employ two traditional metrics:
peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) [45] as well as two deep learning-based metrics:
learned perceptual image patch similarity (LPIPS) [46] and
Fréchet inception distance (FID) [47]. For no-reference assess-
ment, we employ UNIQUE [48] to comprehensively evaluate
image quality. Higher PSNR, SSIM, and UNIQUE, and lower
LPIPS and FID indicate better quality. As for the face recog-
nition task, we adopt the average accuracy as the evaluation
metric.

B. Comparisons With State-of-the-Arts

To prove the effectiveness of our Low-FaceNet, we compare
it with seven state-of-the-art LLE approaches, including
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Fig. 6. Image enhancement results tested in CASIA-Test. (a) Input low-light image, and the enhancement results of (b) LIME [7], (c) RetinexNet [10],
(d) SSIENet [16], (e) RUAS [17], (f) Zero-DCE [14], (g) Zero-DCE++ [18], (h) SCL-LLE [19], (i) our Low-FaceNet, and (j) ground-truth image. The
numbers below every image are the PSNR and SSIM. Our Low-FaceNet can well brighten the illumination while preserving image details, but the other
methods tend to cause color artifacts, structure distortions, and global or local overexposure.

LIME [7], RetinexNet [10], SSIENet [16], RUAS [17],
Zero-DCE [14], Zero-DCE++ [18], and SCL-LLE [19].
Among them, RetinexNet, SSIENet, and RUAS are
Retinex-based methods. All the methods are retrained
on our LaPa-Face dataset with recommended settings for a
fair comparison.

1) Comparisons on Synthetic Datasets: We visually com-
pare the results of our method with the state-of-the-art methods
on several synthetic datasets. As illustrated in Fig. 6, the
images enhanced by LIME and SCL-LLE remain relatively
dim, which poses a challenge in effectively capturing facial
details. RetinexNet and SSIENet lead to noticeable distortions
in image details and colors, resulting in unnatural effects that
severely affect image quality. RUAS, Zero-DCE, and Zero-
DCE++ potentially introduce overexposure in local or global
regions of the enhanced images. Comparatively, our method
can strikingly elevate the brightness to a natural level while
minimizing color and detail distortions. The enhanced facial
images maintain natural skin tones and recover minute details,
which contributes to the performance of face recognition
models. Overall, the proposed Low-FaceNet addresses the
shortcomings of existing methods and excels in enhancing
low-light images by optimally balancing color, detail, and
brightness factors.

Besides, Table II reports the performance evaluation in
the aspect of both the LLE and face recognition tasks on
several synthetic datasets. Compared with the state-of-the-art
approaches, our Low-FaceNet achieves the best performance
in both image quality and face recognition accuracy. It is
noteworthy that our method surpasses these approaches by
large margins. The enhancements are particularly striking, with
improvements of 0.64 db, 0.053, 0.08, and 5.01 in PSNR,
SSIM, LPIPS, and FID over the second-best competitor, and
remarkable gains of 1.29, 0.20, and 5.3 in recognition accuracy
on three datasets, respectively.

We argue that the superior recognition performance is not
only due to the gain brought about by changes in image
quality. Albeit low-light images processed with low-level
image enhancement approaches exhibit better visual qual-
ity, they may not confer the same benefits upon high-level
computer vision tasks. Taking an example from the quan-
titative results presented in Table II, most methods bring
gains in image quality compared to the results of unprocessed
low-light data in the first row. However, some of them actu-
ally harm the recognition performance. For instance, RUAS
yields 15.30 db (7.69 db gains) and 0.800 (0.413 gains)
in PSNR and SSIM, while the accuracy drops to 89.34,
significantly lower than 96.60 achieved with the low-light data
without processing. In contrast, our Low-FaceNet delivers both
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TABLE II
QUANTITATIVE COMPARISONS ON SEVERAL SYNTHETIC DATASETS. BOLD AND UNDERLINED INDICATE THE BEST

AND SECOND BEST, RESPECTIVELY

high-quality enhancement results and superior recognition
accuracy. It sufficiently proves the effectiveness of our method.

2) Comparisons on Real-World Scenes: LLE in real-world
scenarios presents an extremely challenging task. The ability
to control partial overexposure, correct overall color tones, and
preserve intricate details is of great importance. To explore the
generality of the proposed method in wild scenarios, we test
our Low-FaceNet on some challenging real-world examples
collected from the Internet. As depicted in Figs. 2 and 7,
unfortunately, the performance of all the approaches has
dropped. However, it is evident that our method consistently
delivers more satisfactory visual results compared to the other
competitors. It excels in enhancing dark regions while main-
taining color tones and recovering the most desirable details.
In contrast, LIME, Retinex, and SSIENet produce severe color
deviations. SCL-LLE fail to enlighten the back-lit regions
and achieve clear facial recovery. On the other hand, RUAS
tends to amplify noise and produce over-exposed artifacts,
particularly in the facial region. Zero-DCE tends to excessively
smooth out intricate details. In comparison, our proposed
Low-FaceNet yields natural exposure and structural detailing.
This experiment verifies that Low-FaceNet trained on our
proposed synthetic LaPa-Face can effectively cope with real-
world low-light scenes with a remarkable generality ability.

3) Discussion on Data Synthesizing Method: To address
concerns about the potential impact of our data synthesis
method on the generality of our model, we have employed
a more refined way to re-synthesize the CelebA-Test dataset,
referred to as CelebA-Test-II. In this synthesis process, we take
into account variations in gamma values and incorporate
simulated noise in low-light images. Initially, we apply gamma
correction to adjust the brightness of the images, using gamma
values ranging from 2.15 to 2.25. Subsequently, we introduce
random noise into the images, with a mean of 0 and a
standard deviation in the range of 0.26–0.30. We conduct
a fresh set of experiments utilizing the original pretrained
model on LaPa-Face. The results are presented in Fig. 8 and
Table III. The results provide clear evidence that even when
the testing dataset is synthesized using this alternative method,
our approach consistently outperforms other methods. Unfor-
tunately, none of the methods are able to completely eliminate
the noise. However, when compared to existing methods, the

TABLE III
QUANTITATIVE RESULTS ON CELEB-TEST-II. BOLD AND

UNDERLINED INDICATE THE BEST AND THE
SECOND-BEST RESULTS, RESPECTIVELY

proposed Low-FaceNet exhibits a more natural and robust
performance. Conversely, the other methods struggle to handle
such scenarios and fall short of fully restoring the color
and intricate details in the images. This further verifies the
generality and effectiveness of our method.

C. Ablation Study

We evaluate the effect of the contrastive negative samples
and four modules (i.e., loss terms) on the performance of our
proposed Low-FaceNet, as illustrated in Fig. 9 and Table IV.

1) Effect of Negative Samples: To verify the impact of
negative samples, we conduct an experiment where we remove
the negative samples from contrastive training data. It turns
out that the model trained w/o Sneg presents notably poor
performance, where the brightness level of the given image
remains persistently low, with numerous concealed details.

2) Effect of Loss Terms: To investigate the contributions of
the various loss terms, we conduct experiments where each
loss term is alternately removed, allowing us to assess their
impact on the quality of the enhanced images and recognition
performance. As illustrated in Fig. 9, the numbers below each
image indicate the average illumination.

1) The model trained w/o Lcont fails to elevate the bright-
ness of the input image, which reveals the superiority of
contrast learning-based brightness recovery.

2) The model trained w/o L feat tends to produce several
color deviations and lose some details, with an average
illumination that is excessively high compared to the
ground truth image. In contrast, the full model exhibits
more desired colors and details, indicating the necessity
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Fig. 7. Image enhancement results tested in real-world examples. (a) Input low-light image, and the enhancement results of (b) LIME [7], (c) RetinexNet [10],
(d) SSIENet [16], (e) RUAS [17], (f) Zero-DCE [14], (g) SCL-LLE [19], and (h) our Low-FaceNet. Our method outperforms others, particularly in controlling
exposure levels, representing natural color tones, and preserving intricate details.

TABLE IV
QUANTITATIVE RESULTS OF ABLATION STUDY. BOLD AND UNDERLINED INDICATE THE BEST AND

THE SECOND-BEST RESULTS, RESPECTIVELY

Fig. 8. Image enhancement results of a re-synthesized example from
CelebA-Test-II. (a) Input low-light image, and the enhancement results of
(b) LIME [7], (c) RetinexNet [10], (d) SSIENet [16], (e) RUAS [17],
(f) Zero-DCE++ [18], (g) SCL-LLE [19], and (h) our Low-FaceNet. The
proposed Low-FaceNet exhibits a more natural and robust performance.

of the feature loss in preserving colors and inherent
features.

3) The model trained without Lseg has local overexposure
areas (e.g., the forehead skin and the lip area), with
a higher average illumination than the ground-truth

images. In contrast, the full model exhibits a more
natural exposure level, indicating the effectiveness of
semantic information to ensure consistent and smooth
illumination of the same semantic category.

4) The introduction of L face primarily serves for recognition
accuracy improvements. This term does not significantly
affect the overall illumination of the results. The average
illumination of images Fig. 9(f) w/o L face is essentially
the same as the average illumination of visual results
produced by the full model. However, it brings signifi-
cant gains in face recognition accuracy.

Clearly, our method with complete contrastive samples and
all losses in joint training is the best-ranked approach that
significantly outperforms the other options. The noticeable per-
formance decline in the absence of negative samples or specific
loss terms underscores the effectiveness of our comprehensive
framework, which adeptly incorporates all four key modules
and unpaired low-light images as negative samples.

D. Limitation Discussion

While Low-FaceNet demonstrates robust performance in
many synthetic and real-world scenarios, there are observed
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Fig. 9. Visual results of ablation study. (a) Input low-light image, and the results of (b) W/o Sneg, (c) W/o Lcont, (d) W/o L feat, (e) W/o Lseg, (f) W/o L face,
(g) our Low-FaceNet, and (h) ground truth image. The numbers below every image indicate the average illumination of each image. Our Low-FaceNet trained
with complete contrastive samples and modules can produce more realistic enhancement results with less color distortion and fewer artifacts. All components
contribute to the overall superior performance.

Fig. 10. Failure cases. Our Low-FaceNet can hardly handle images captured
in (a) extremely dark conditions and (b) strong light effects, which rarely
occurs in real-world face recognition systems.

failure cases that merit discussion. Under extremely dark
conditions [see Fig. 10(a)], our method fails to perform illumi-
nation brightening and detail restoration. This can be attributed
to the exceedingly severe underexposure in terms of intensity
and coverage, there is little information available for the
network to generate the missing details in the neighborhood.
Even humans have difficulty recognizing the individual in
the image. Conversely, when dealing with low-light images
with strong light effects [see Fig. 10(b)], Low-FaceNet hardly
struggles with these nighttime lighting effects and even mis-
takenly amplifies them. This is due to the lack of images with
similar strong light effects in our training dataset. However,
these cases rarely occur in real-world face recognition systems.
Besides, we have to acknowledge that the quality of the
proposed benchmark has certain limitations. Real-world low-
light images often involve changes in contrast, gamma values,
and loud noise in addition to brightness changes.

In our future work, we are dedicated to establishing a more
refined benchmark that better simulates real-world scenarios.
We believe this benchmark will further enhance the versatility
and adaptability of our Low-FaceNet and also inspire more
impactful research in the vision community. Furthermore,
we are keen to explore how our framework can be extended
to other tasks related to low-level vision.

VI. CONCLUSION

In this article, we propose a novel face recognition-driven
low-light image enhancement network, called Low-FaceNet.
To serve the training of Low-FaceNet and facilitate broad com-
parisons in the research community, we build a new bench-
mark named LaPa-Face, containing normal-light/low-light

images with semantic and identity labels. Low-FaceNet pos-
sesses an image enhancement network and congregates four
key modules, i.e., a contrastive learning module, a fea-
ture extraction module, a semantic segmentation module,
and a face recognition module. The former three modules
guarantee Low-FaceNet has the capacity of contrastive bright-
ness enhancement, feature preservation, and semantic-guided
smoothness, while the last one promotes the accuracy improve-
ment of face recognition in low-light conditions. We illustrate
that low-level and high-level tasks (i.e., LLE and face recog-
nition) can promote each other and realize mutual benefits.
Low-FaceNet reveals that underexposed images and semantic
information that are easily overlooked can be beneficial in
obtaining visual-pleasing results, even without the normal-light
image labels. Extensive experiments show the superiority of
Low-FaceNet for obtaining more natural and rich details and
colors. The application of face recognition further reveals our
potential in settling the downstream face recognition task to
gain better performance.
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