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Figure 1: Human scanpaths are composed of a series of fixations and saccades. Visual inputs at the fovea are processed in high
resolution during fixations, while peripheral vision is correspondingly blurred to guide saccades. A scanpath prediction model
simulates human saccadic decisions by predicting the priority probability map of the next fixation.

ABSTRACT

We propose to exploit the scanpath prediction technology to simulate
human visual system to automatically generate gaze scanpaths for
VR/AR applications, to alleviate the equipment and computational
cost in foveated rendering. Specifically, we propose a novel deep
learning-based scanpath prediction model called Visual ScanPath
Transformer (VSPT), to predict human gaze scanpaths in both free
viewing and task-driven viewing situations, based on which the
VR/AR systems can execute foveated rendering rapidly and cheaply.
The proposed VSPT first extracts highly task-related image features
from the visual scene, and then explores the global dependency rela-
tionships among all the image regions to generate each image region
a global feature. Next, VSPT simulates the human visual working
memory to consider all the previous fixations’ influences when pre-
dicting each fixation. Experimental findings confirm that our model
exhibits adherence to classical visual principles during saccadic
decision-making, surpassing the current state-of-the-art performance
in free-viewing and task-driven (goal-driven and question-driven)
visual scenarios.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction techniques—Pointing; Computing
methodologies—Artificial intelligence—Computer vision—Scene
understanding
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1 INTRODUCTION

Virtual Reality (VR) and Augmented Reality (AR) technologies
integrate the digital world with reality through immersive experi-
ences [39], which have been developed rapidly and brought many
new ways of entertainment and industrial applications in recent
years. The research on eye gaze movements, such as gaze estima-
tion, plays a very crucial role in VR/AR applications [22]. On the
one hand, gaze estimation can accurately track the users’ visual
behavior by analyzing their eye movements and gaze directions,
enabling natural and intuitive human-computer interaction(HCI) in
VR/AR [8,13,31,43]. On the other hand, gaze estimation can predict
accurate gaze locations in real-time, based on which the VR/AR
system can execute a more accurate foveated rendering, resulting
in a more accurate rendering result with a lower computational bur-
den. Furthermore, by analyzing gaze data, the VR/AR systems can
understand and predict user attention and intent [38], subsequently
providing personalized recommendations [6, 26] and optimizing
interface design [29], ultimately enhancing user experiences.

Based on the descriptions above, accurate prediction of users’
eye fixations and scanpaths is very important in VR and AR appli-
cations. However, traditional methods typically rely on additional
cameras, electroencephalograms (EEG), and other sensors to ob-
tain information about the human eye and face, and compute each
moment’s fixation based on the collected information, which is com-
putationally heavy. In recent years, research in computer vision
has made remarkable progress in human eye fixation and scanpath
prediction. The human eye scanpath describes the sequence of hu-
man eye fixation when observing a visual scene. Many studies have
demonstrated certain commonalities among different human visual
scanpaths [20, 21, 50]. By training on the large collected scanpath
datasets, the scanpath prediction models can extract these common-
alities and predict the users’ scanpaths accurately. Consequently,
the VR/AR applications can generate a foveated rendering result in
advance based on the scanpath prediction result, based on which



the users can preliminarily view the virtual environment. And If the
users want to see additional regions beyond the fixations, they can
activate the eye tracking system to capture their gaze location. Such
an arrangement can dramatically reduce the amount of computation.

Based on our observation, people typically observe visual scenes
in two different states: free viewing and task-driven viewing. Task-
driven viewing can be further categorized into two types: goal-driven
viewing and question-driven viewing. To investigate human visual
scanpath prediction in different contexts, we have focused on three
specific scenarios. Firstly, we have studied visual scanpaths under
free viewing, where the observer is free to observe a visual scene
without a specific task. In this situation, the observer’s attention is
always attracted by the salient regions in the scene. Secondly, we
have examined goal-driven scanpath prediction, where the observer
views the visual scene to search for a target. In this case, the ob-
server’s visual scanpath will be influenced by the target, following a
particular pattern and order for searching. Lastly, we have discussed
question-driven scanpath prediction, where the observer views the
visual scene with a specific question in mind, expecting to find an
answer. This task needs the observer to focus on question-related
visual elements and thus forms a question-oriented visual scanpath.

In this paper, we propose a novel scanpath prediction model,
dubbed the Visual ScanPath Transformer (VSPT), to predict human
scanpaths in both free-viewing and task-driven viewing situations.
VSPT formulates scanpath prediction as a sequential decision pro-
cess by generating each fixation based on both the original image
and the previous fixations. This simulates the human visual working
mechanism, which considers the history of fixations and the visual
information available at each time step. As shown in Fig. 2, VSPT
consists of four main components: a saliency feature extraction
module, a visual encoder module, a fixation decoder module, and
a fixation generator module. The saliency feature extraction mod-
ule extracts highly task-relevant visual features from the original
image based on a static saliency map (in a free-viewing situation)
or task guidance map (in a task-driven viewing situation). The
visual encoder module then utilizes a Transformer structure to ex-
plore the global dependency relationships among all image regions,
generating a global feature representation for each region. The fixa-
tion decoder module predicts each time step’s fixation embedding
by simulating the visual working memory. It first learns the influ-
ences of the historical fixations on current fixation, and then predicts
the embedding of current fixation based on both the global feature
representations and the influences. Finally, the fixation generator
module predicts fixation coordinates from the fixation embeddings.
Compared with previous works, our approach is heuristic-free, elim-
inating reliance on visual rules widely referenced in other model
designs, significantly simplifying the scanpath prediction workflow
and overall model architecture. Experimental results demonstrate
that our model outperforms the current state-of-the-art scanpath pre-
diction methods in free-viewing and task-driven visual scenarios and
generates accurate human scanpaths for VR/AR systems.

In summary, the main contributions of this work are as follows:

• We propose to exploit the scanpath prediction technology in
the computer vision field to automatically predict human-like
scanpaths for each image scene in VR/AR applications, which
can significantly reduce the equipment and computational cost
of foveated rendering.

• We propose a heuristic-free visual scanpath predictor that can
accurately predict human scanpaths under both free viewing
and task-driven viewing conditions. Our approach involves
extracting highly task-related features, analyzing the global
long-range dependency relationship among all image regions
using a Transformer structure, and simulating human visual
working memory to generate fixations at each time step. By
utilizing these techniques, our proposed predictor can simulate
the human visual system more vividly and accurately.

• The proposed method is comprehensively evaluated on four
eye-tracking datasets of free-viewing scenes, as well as a visual
search dataset, and a visual question-answering dataset. It con-
sistently achieves state-of-the-art performance, demonstrating
our approach’s robustness and generalization capability.

2 RELATED WORK

The key to visual scanpath prediction is to simulate how HVS han-
dles visual scenes. However, this is a highly challenging task due to
the complexity of HVS. Research on this task primarily focuses on
two scenarios: free viewing and task-driven viewing.
Free viewing: Early methods mainly generate scanpaths by execut-
ing some well-acknowledged human visual rules on static saliency
maps [18, 19, 45]. Itti et al. [19] is the most representative work.
They first utilized a dyadic Gaussian pyramid to generate saliency
maps and then executed the Winner-Take-All (WTA) and Inhibit-Of-
Return (IOR) strategies on the obtained saliency maps to generate
scanpaths. However, using a static saliency map throughout the
entire scanpath prediction process neglects the dynamic temporal
relationship among fixations, leading to significant discrepancies
between predicted and actual human visual behaviors.

Subsequent methods attempt to model the dynamical temporal
relationships among fixations [25,28,40,42,46,47]. Wang et al. [46]
integrated three human attention-driven factors named reference
sensory responses, fovea-periphery resolution discrepancy, and vi-
sual working memory into a residual perceptual information map,
from which new fixation is selected according to the information
maximization principle. Sun et al. [42] exploited projection pursuit
of conducting Super Gaussian Component (SGC) analysis sequen-
tially and selected new fixation as the location with maximum SGC
response. Wang et al. [47] used a foveated image to simulate reti-
nal imaging and generated fixations by jointly considering foveated
saliency map, a saccadic bias of gaze shift, and IOR mechanism
in short-term memory. Le Meur et al. [25] first conducted spatial
statistics of the gaze patterns from the collected human scanpaths,
then developed a dynamical scanpath prediction model by integrat-
ing the obtained statistical conclusion, bottom-up saliency, and IOR
mechanism. Xia et al. [49] conducted a deep autoencoder to form
the representation from surrounding patches to central ones, based
on which the perceptual residual is to guide the fixation generation.
Bao et al. [4] integrated foveal vision and inhibition of return with
deep convolutional neural networks into a recurrent model to pre-
dict human scanpaths. These methods formulate human scanpath
prediction as an iterative process, constantly predicting the location
of the subsequent fixation based solely on the information from
the adjacent one, resulting in incomplete modeling of the temporal
relationships between fixations.

Some researchers use Recurrent Neural Networks (RNNs) to
model the sequential mechanism of HVS. Ngo and Manjunath [33]
proposed the first RNN-based scanpath prediction model. Sun et
al. proposed an Inhibition of Return - Region of Interest (IOR-ROI)
framework to predict scanpaths, where a dual LSTM unit containing
an IOR-LSTM and ROI-LSTM is constructed. Chen et al. [10]
proposed a deep reinforcement learning-based scanpath prediction
framework in visual question answering. They also exploited Conv-
LSTMs as the skeleton module to model HVS.
Task-driven viewing: Compared to free viewing scanpath predic-
tion, research on task-driven scanpaths is not yet sufficient. Com-
mon task-driven scanpaths currently include visual search and visual
question-answering modes, which require searching for specific in-
formation in visual scenes to complete tasks. The task of visual
search [48] is to find a target in a scene. This task requires pur-
poseful scene scanning to identify features or patterns that match
the target object. The Microwave-Clock-Search (MCS) dataset [54]
was introduced as an early attempt to study goal-driven attention
control in visual search tasks. Recently, a study [52] applied inverse
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Figure 2: Architecture of Visual Scanpath Transformer. The proposed model consists of four main components: a Feature Extractor module, a
Visual Encoder module, a Fiaxtion Decoder module, and a Fixation Generator module.

reinforcement learning to the scenario of visual search in scanpath
and proposed a large-scale dataset of search fixations containing
18 target categories (COCO-Search18 [11]). Chen and Yang et
al. [12, 53] compared search behaviors under target present and
target-absent conditions, revealing weaker target guidance signals
in target-absent searches, and proposed a visual stopping criterion
prediction model based on gaze history and subject features. Hu
et al. [17] proposed FixationNet, a novel learning-based model for
forecasting human eye fixations in task-oriented virtual environ-
ments. Mondal et al. [30] proposed a Gazeformer model also based
on a transformer encoder and decoder architecture. The differences
between our model and Gazeformer are distinct. Firstly, we abstract
task-guidance information into attention maps, and use the Trans-
former encoder to model their global relationships with the visual
features, while Gazeformer encodes the search target as a feature
embedding and directly concatenates it with visual features. Sec-
ondly, we use a mixture density network to generate a multimodal
probability map for each fixation and an autoregressive mode to
decode the fixation sequence, while Gazeformer uses a randomly
initialized fixation query and outputs the entire scanpath at once.

Visual Question Answering (VQA) requires finding answers to
scene-related questions while viewing the scene. Chen et al. [10]
presents a framework for predicting scanpath in the context of visual
question answering. The framework is based on deep reinforcement
learning and addresses exposure bias in scanpath prediction through
self-critical sequence training. It also introduces a consistency-
divergence loss to generate a distinguishable scanpath between cor-
rect and incorrect answers. The framework performs well in both
free-viewing and visual search scenarios.

3 METHOD

We propose a VSPT model for predicting scanpaths in free-viewing
and task-driven visual exploration scenarios. Fig. 2 illustrates the
overall framework of our proposed method. It consists of four
components: a feature extractor, a visual encoder, a fixation decoder,
and a fixation generator.

3.1 Feature Extractor
The input visual scene image is first passed through a feature extrac-
tor for encoding to obtain a saliency feature representation highly
relevant to the scanpath prediction task. Specifically, we use the
saliency prediction network SalGAN [34], which has been pre-
trained on an eye-tracking dataset and internally adopts a convo-
lutional encoder-decoder architecture, where the encoder is the same
as VGG-16 [37] without the final pooling and fully connected lay-
ers. The decoder is similar to the encoder but with the layer order
reversed, and upsampling layers replace pooling layers.

We first resize the input I to 192×256 and feed it into SalGAN,
obtaining layers of feature maps from its convolutional decoder.
To fuse visual features from different levels, we extract the feature
maps generated by the various convolutional layers of the decoder,
upsample all feature maps to the original size of the input image,
and concatenate them to obtain the final feature map F ∈RC×H0×W0 ,
with typical values C = 576, H0 = 192, and W0 = 256.

To emulate the hierarchical attention mechanisms inherent within
the human visual system more accurately, we impose constraints
on the extracted visual features by employing low-level saliency
maps, which capture visually prominent stimuli, in conjunction with
high-level context-guided maps that account for semantic context.
This can be manifested in two distinct forms:
Free-viewing mode: In the context of free-viewing scenes, the
human visual exploration process is stimulus-driven, characterized
by a bottom-up attention mechanism. We employ saliency maps
representing static visual stimulus representations to perform spatial
attention operations on the acquired visual features. This guides the
model to focus on important regions during the decoding phase for
fixation. The specific definition of this operation is:

F̃ = F⊙S (1)

Here, S denotes the saliency map S ∈ R1×H0×W0 output by the
SalGAN model, and ⊙ represents the hadamard product. Through
element-wise multiplication, we obtain the spatial-wise attention
re-weighted image feature maps F̃.
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Figure 3: The structure of the task-guided module, where the task
description in visual and language forms is abstracted as the task
input. The ⊙ represents the Hadamard product.



Task-driven mode: In the simulation of task-driven visual explo-
ration processes, we employ a task-guided module for integrating se-
mantic and visual content, expressing the influence of tasks through
task guidance maps, thereby highlighting image regions associated
with the task. In this mode, the control process of human visual
attention is co-influenced by low-level visual stimuli and high-level
contextual constraints. As shown in Fig. 3, we employ saliency
maps and task guidance maps to perform a combined spatial atten-
tion operation, which is defined as follows:

F̃ = F⊙ (S⊙A) (2)

Here, S represents the saliency map, A denotes the task guidance
map, and ⊙ signifies the Hadamard product.

An externally pre-trained model introduces task-related guidance
information. Specifically, in visual exploration tasks, we use an
object detector [55] to detect search targets in the visual search scene,
considering regions with detected similar targets as highly task-
related. In VQA scenarios, models trained on large VQA datasets
can effectively represent the spatial semantics of input questions.
Therefore, we adopt the machine attention maps from the VQA
model [1] as spatial position guidance to generate task guidance
maps. In practice, task guidance maps are processed to have a
two-dimensional shape consistent with the input image size and are
normalized within the range of [0, 1].

3.2 Visual Encoder
The visual encoder module further models the global dependencies
between visual feature regions. First, average pooling is used to
downscale the activation map F̃ to a smaller resolution of 30x40.
Subsequently, its spatial dimensions are collapsed to fit the encoder’s
input, resulting in a set of feature vectors {p1, p2, ..., pN}, where
N = 1200. A linear layer is then utilized to map the dimensionality c
of the feature vectors to the internal dimension d of the encoder. The
encoder follows the standard architecture of the Transformer [44],
consisting of a stack of identical layers. Each encoder layer com-
prises two sub-layers: a multi-head self-attention module and a
feed-forward network (FFN), both surrounded by residual connec-
tions followed by layer normalization. Before being fed into each
encoder layer, the feature vectors are supplemented with fixed posi-
tional encodings [35] to allow the self-attention module to exploit
positional information.

3.3 Fixation Decoder
We employ an additional fixation decoder module in conjunction
with the fixation generator module to decode fixation sequences from
the visual feature maps. The scanpath prediction can be considered
a standard sequence generation task, and we adopt an autoregres-
sive [16] scheme to predict fixations iteratively. Initially, for the
current time step t, we utilize the fixation coordinates zt−1 from the
previous time step t - 1 to initialize a fixation query qt , which is
responsible for encoding the current region of interest information
and is ultimately transformed into the corresponding fixation embed-
ding q̃t . Specifically, the first fixation query is initialized using the
image center as the previous coordinates. In particular, we use an
embedding layer to initialize the fixation query, which is defined as:

qt = Embedding(zt−1) , t = 1,2,3 . . .T (3)

where the fixation coordinates are normalized to relative values in
the range of [0, 1] according to the image size. The embedding
layer uses linear mapping, and T represents the length of the pre-
dicted sequence. Next, the fixation query is fed into the decoder,
which also comprises a set of identical decoder layers. In each de-
coder layer, it first performs self-attention with historical fixation
queries to integrate the influence of historical fixation, then interacts
with the visual features output by the visual encoder through cross-
attention to obtain scene information, and finally transforms into

fixation embeddings after passing through the feed-forward network.
Compared to the visual encoder, the fixation decoder has an addi-
tional cross-attention module between each layer’s self-attention and
feed-forward network modules. Each decoder layer supplements the
fixation query with learned positional encoding.

3.4 Fixation Generator

The distribution of fixation in visual scanpaths is often multi-modal,
meaning that there are multiple possible fixations. Therefore, we
adopt a Mixture Density Network (MDN) to predict the probabil-
ity distribution of the current fixation. The MDN takes a fixation
embedding produced by the fixation Decoder as input and predicts
K sets of Gaussian distribution parameters, including the means µ ,
standard deviations σ , correlations ρ , and mixture weights π . The
MDN is built as a 2-layer perceptron containing a hidden layer and a
ReLU activation layer, utilizing K Gaussian to model the probability
distribution, which can be represented as follows:{

µ̃ i
t , σ̃

i
t , ρ̃

i
t , π̃

i
t

}K

i=1
= fmdn (q̃t ;θmdn) (4)

σ
i
t = exp

(
σ̃

i
t

)
,ρ i

t = tanh
(

ρ̃
i
t

)
,π i

t =
exp
(
π̃ i

i
)

∑
K
i=1 exp

(
π̃ i

t
) (5)

Here, q̃t is the fixation embedding produced by the fixation decoder
at time step t, and θmdn denotes the weights and biases of the linear
layers. Eq. 5 constrains the mixture of Gaussian parameters within a
reasonable range.

The K sets of Gaussian distributions jointly generate the final
probability map, from which we select the pixel location with the
highest probability as the next fixation.

ẑt = argmax
z∈Ω

(
K

∑
i=1

π
i
t N

(
zt | µ

i
t ,σ

i
t ,ρ

i
t

))
(6)

where N denotes the bivariate normal distribution, ẑt represents
the predicted fixation coordinates.

3.5 Training Objective

The model predicts a fixation sequence of length T for each input
image. The probability priority map for each fixation is constructed
using the K Gaussian kernel parameters output by the model. We
use the actual human fixation location at the corresponding time step
for supervised learning, guiding the predicted probability priority
map to generate accurate fixation. The loss function employed for
training is the negative log-likelihood, defined as follows:

L =− 1
T

T

∑
t=1

log

(
K

∑
i=1

π
i
t N

(
z∗t | µ

i
t ,σ

i
t ,ρ

i
t

))
(7)

Here, T denotes the length of the predicted fixation sequence, and
z∗t represents the t-th actual human fixation.

Our fixation decoder employs the Transformer architecture, which
differs from the RNN-inspired scanpath prediction models. This
allows for parallel training of the entire fixation point generation
process instead of iterating strictly in temporal order. The saliency
feature extractor module of the model is pre-trained for the saliency
prediction task, and its parameters are frozen during the training pro-
cess. We only update the parameters of the visual encoder module,
fixation decoder module, and fixation generator module.



Table 1: Comparison between our method and other scanpath prediction models on the SALICON, iSUN, OSIE, and MIT1003 datasets regarding
ScanMatch, SS, and MultiMatch. ‘Human’ refers to human performance. The best prediction results are highlighted in bold, and the second-best
results are highlighted in underlined.

SALICON Dataset iSUN Dataset

Method ScanMatch↑ SS↑ DTW-2D↓ MultiMatch↑ ScanMatch↑ SS↑ DTW-2D↓ MultiMatch↑
Vector Direction Length Position Vector Direction Length Position

Human 0.2710 0.3303 468.01 0.8778 0.6072 0.8660 0.7707 0.3699 0.4471 413.89 0.9382 0.7482 0.9171 0.8607

Itti et al. 0.1946 0.2967 715.65 0.8857 0.6470 0.8555 0.7296 0.1321 0.2508 958.09 0.8852 0.5930 0.8421 0.7006
SGC 0.2084 0.2772 613.15 0.9034 0.6347 0.8987 0.7689 0.1588 0.2531 783.61 0.9159 0.5863 0.8840 0.7589

wang et al. 0.2293 0.3209 528.33 0.9308 0.6395 0.9250 0.8177 0.2213 0.2975 710.72 0.9014 0.5828 0.8770 0.7975
SaltiNet 0.1540 0.2850 765.17 0.9127 0.6567 0.8999 0.7239 0.1382 0.2757 948.86 0.9089 0.5853 0.8896 0.7272

PathGAN 0.0474 0.1982 1102.00 0.9415 0.5697 0.9219 0.5761 0.0325 0.1596 1332.78 0.9573 0.6011 0.9411 0.5458
DeepGazeIII 0.1778 0.3042 655.77 0.9351 0.6635 0.9245 0.7561 0.1526 0.2482 757.09 0.9349 0.5643 0.9289 0.7768

IOR-ROI 0.2732 0.3391 491.75 0.9115 0.6934 0.8987 0.8081 0.2357 0.3387 633.88 0.8949 0.5717 0.8791 0.7953
VQA 0.2938 0.3451 475.04 0.9354 0.6288 0.9108 0.8271 0.2541 0.3235 563.40 0.9291 0.5999 0.9088 0.8169

Ours 0.3131 0.3663 468.15 0.9406 0.6458 0.9248 0.8344 0.2861 0.3590 501.74 0.9410 0.5768 0.9301 0.8235
OSIE Dataset MIT1003 Dataset

Method ScanMatch↑ SS↑ DTW-2D↓ MultiMatch↑ ScanMatch↑ SS↑ DTW-2D↓ MultiMatch↑
Vector Direction Length Position Vector Direction Length Position

Human 0.4154 0.4691 576.75 0.9401 0.6961 0.9284 0.8553 0.4016 0.4384 439.34 0.9112 0.7243 0.9051 0.8552

Itti et al. 0.2565 0.3318 826.86 0.8907 0.6629 0.8576 0.7526 0.2081 0.3152 826.00 0.8837 0.6874 0.8511 0.7459
SGC 0.2656 0.3181 758.95 0.9263 0.6598 0.9035 0.7754 0.2255 0.3058 702.27 0.9206 0.6572 0.8954 0.7834

wang et al. 0.2962 0.3587 674.01 0.9316 0.6792 0.9182 0.8000 0.2982 0.3858 586.41 0.9369 0.6966 0.9339 0.8271
SaltiNet 0.1949 0.3042 892.95 0.9155 0.6744 0.8968 0.7262 0.1623 0.2919 859.12 0.9141 0.6986 0.9044 0.7308

PathGAN 0.0600 0.1970 1376.16 0.9425 0.5782 0.9280 0.5846 0.0446 0.1521 1286.01 0.9425 0.5802 0.9258 0.5923
DeepGazeIII 0.1887 0.3272 832.38 0.9374 0.6740 0.9237 0.7581 0.1823 0.2728 711.69 0.9288 0.6958 0.9236 0.7858

IOR-ROI 0.3477 0.3922 573.87 0.9145 0.7197 0.8918 0.8282 0.3178 0.4185 549.23 0.9118 0.7388 0.8980 0.8285
VQA 0.3901 0.4279 589.91 0.9434 0.6397 0.9223 0.8437 0.3500 0.4255 589.91 0.9275 0.6443 0.9028 0.8459

Ours 0.3985 0.4359 581.56 0.9482 0.6619 0.9342 0.8478 0.3628 0.4452 505.28 0.9386 0.6824 0.9289 0.8615

4 EXPERIMENTS

4.1 Experimental Settings
Datasets. We conducted scanpath prediction experiments under free-
viewing conditions on the SALICON [20], iSUN [51], OSIE [50],
and MIT1003 [21] datasets. The training images were taken from
the SALICON training set, and iSUN, OSIE, and MIT1003 were
used to evaluate the model’s performance. SALICON is currently
the largest eye fixation dataset, consisting of 10,000 training im-
ages, 5,000 validation images, and 5,000 test images. All the eye
fixation data was collected through mouse tracking on crowdsourc-
ing platforms, with an average of 60 scanpaths per image. iSUN
includes 6,000 training images, 926 validation images, and 2,000
test images. The OSIE dataset contains 700 natural images, each
viewed by 15 participants. The MIT1003 dataset consists of 1,003
images, including 779 landscape images and 228 portrait images of
varying resolutions, with eye-tracking data collected from 15 partici-
pants for all images. We conducted visual search task experiments
on the COCO-Search18 dataset [52], which contains 6,202 images,
half depicting instances of the specified target objects, while the
other half do not, corresponding to standard Target-Present (TP) or
Target-Absent (TA) search tasks. For visual question-answering, we
conducted experiments on the AiR [9] dataset, with its eye-tracking
data collected from 20 participants while answering the questions
and associations with the correctness of their answers.
Evaluation Metrics. We used five evaluation criteria to evaluate
the predicted scanpath’s performance, including ScanMatch [14],
Sequence Score(SS) [7], MultiMatch [15], Time-Delay Embedding
(TDE) [46] and Dynamic Time Warping(DTW) [23]. ScanMatch
uses characters to encode the fixations and represents each scanpath
as a string. Then, it used a Needleman-Wunsch [32] algorithm to
match two strings and compute their similarity. SS is an improve-
ment over ScanMatch, which clusters all actual human fixations
into multiple clusters and uses each cluster center as a character.
MultiMatch assesses the similarity between two scanpaths from five
aspects, including the saccade’s shape, direction, and length and
the fixation’s position and duration. Since we only predicted the
fixations’ temporal orders and spatial locations, we evaluated the

predicted scanpath only from the aspects of shape, direction, length,
and position. TDE first divides each scanpath into pieces of length
k. Then, for each piece in the predicted scanpath, TDE computes
its minimum distance to the split pieces of the real human scan-
paths. TDE uses a Hausdorff Distance (HD) and Mean Minimum
Distance (MMD) to represent the maximum and average value of
all the above minimum distances. DTW is a distance-based method
that first calculates the distance between each pair of elements in
the two sequences, and then searches for the best matching with the
minimum cumulative distance. “Human” represents the average sim-
ilarity among all the real human scanpaths of each image. “Human”
references the upper bound of the scanpath prediction performance.
Implementation details. We trained our model with the AdamW
optimizer [27], setting the initial learning rate to 10−4 and using
learning rate warm-up and periodic adjustment strategies. The num-
ber of epochs for the warm-up was set to 20, and the learning rate
decreased by half every 50 epochs. The feature map after SalGAN
was average pooled to a size of 30×40 and flattened into N = 1200
feature vectors. The visual encoder and fixation decoder both em-
ployed 4 stacked layers, where each multi-head attention layer used
8 attention heads of width 128 and dk = dv = 64 for the attention
operation. The hidden layer size was 64 for FFN and 16 for MDN,
and the Gaussian kernel K = 5 was used for MDN. Our method was
developed on pytorch, and conducted on a single RTX 3090 GPU.
We calculated the model’s FLOPs, Parameters, and inference time,
which are 41.37G, 35.29M, and 24 ms/fixation, respectively.

4.2 Comparison in Free-viewing

In the mode of free viewing, we compared our model with eight base-
line scanpath prediction models, including Itti et al. [19], SGC [42],
wang et al. [46], SaltiNet [3], PathGAN [2], DeepGazeIII [24], IOR-
ROI [41], and VQA [10]. We obtained the predicted scanpaths of
those methods by running their public codes. Since each image
had multiple human scanpaths collected from different subjects, we
evaluated each predicted scanpath’s performance by first measuring
its similarities with all the human scanpaths, and then averaging all
the similarities to obtain a final evaluation.
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Figure 4: Comparison between our method and other scanpath prediction models on the SALICON, iSUN, OSIE, and MIT1003 datasets regarding
TDE. Various methods are distinguished by different color fold lines, ‘Human’ refers to the inter-observer performance.

Quantitative Evaluation. Table. 1 shows the comparison results
in terms of ScanMatch, SS, DTW, and MultiMatch, and Fig. 4
shows the comparison results in terms of TDE. As can be seen, our
method achieved better results than the state-of-the-art methods on
all four datasets. With the evaluation metrics of ScanMatch and
SS, our model outperformed the other models in all four datasets.
It also achieves the best results in three datasets and the second-
best result in one dataset based on the DTW metric. Our model
showed a great advantage in all datasets under the evaluation criteria
of TDE. MultiMatch is commonly used to assess the performance
of scanpath models in many works. However, we observed that
the results of comparing models based on Vector, Direction, and
Length of MultiMatch were not consistent with other evaluation
criteria. In Fig. 4 and Table 1, the performance of PathGAN was
significantly lower than other models in terms of ScanMatch, SS,
MultiMatch, and TDE. Qualitative visualizations also revealed that
despite high Vector, Direction, and Length of MultiMatch scores,
PathGAN exhibited significant differences from the actual human
scanpaths. Nonetheless, our method performed very well on most of
the MultiMatch metrics.
Qualitative Evaluation. We visualized our scanpath prediction
results and qualitatively compared them with the scanpaths generated
from other baseline models. The comparison results were shown
in Fig. 6, and the number in the lower right corner of each image
represents the ScanMatch value of the corresponding scanpaths.
As shown in Fig. 6, our model predicted scanpaths with shorter
and more evenly distributed saccade amplitudes across different
ScanMatch scores, which was consistent with the saccade amplitude
biases that Le Meur et al. [25] summarized from the existing real
human scanpaths. In addition, although some models could obtain
relatively high ScanMatch scores, their predicted scanpaths had
obvious limitations in visualization. For example, the predicted
fixations of Wang et al. [46] were often gathered in a certain image
region, which was obviously not a good visual exploration route.

4.3 Comparison in Task-driven Viewing

Our method can be easily extended to task-guided scanpath predic-
tion tasks. We validated our model on the AiR dataset for visual
question answering and the COCOSearch18 dataset for visual search.
Due to the lack of previous work in these scenes, we followed Xi-
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Figure 5: Comparison between our method and other scanpath pre-
diction models on the COCOSearch18, AiR datasets regarding TDE.
Various methods are distinguished by different color fold lines, ‘Hu-
man’ refers to the inter-observer performance.

anyu et al.’s [10] setup and customized some deep learning-based
scanpath prediction models (i.e., SaltiNet, PathGAN, and IOR-ROI)
as the comparison methods for supplementary scenes. In the vi-
sual question answering scene, each question was predicted as a
set of correct and incorrect scanpaths, and we calculated similarity
scores between the predicted results for correct and incorrect groups
and human observation results, respectively. Similar to what was
observed in free-viewing scenes, our method also demonstrated ex-
cellent performance in visual question answering and visual search
tasks. As illustrated in Tab. 2, Tab. 3 and Fig. 5, our approach outper-
forms the state-of-the-art methods in two task-driven visual scanpath
prediction scenarios, with superior results in ScanMatch, SS, and
TDE metrics. Moreover, our method achieves the most consistent
performance in the MultiMatch metric.



Ground Truth Ours SaltiNet Wang et al.IOR-ROIVQA Itti et al.SGCPathGAN

0.25 0.27 0.10 0.09 0.27 0.21 0.22

0.45 0.37 0.14 0.11 0.16 0.18 0.16

0.22 0.26 0.09 0.02 0.19 0.21 0.05

0.41 0.51 0.03 0.12 0.21 0.50 0.35

0.49 0.32 0.10 0.11 0.22 0.43 0.04

0.27 0.37 0.09 0.20 0.36 0.30 0.30

0.23

0.26

0.36

0.49

0.57

0.68

Figure 6: Qualitative evaluation of our model, VQA, IOR-ROI, SaltiNet, PathGAN, Wang et al., SGC, and Itti et al. The scores in the lower right
represent the ScanMatch scores of the corresponding scanpaths. The ScanMatch scores of our model gradually decrease from top to bottom in
the images. The comparison shows that our model exhibits good qualitative performance despite low quantitative scores.

Table 2: Comparison between our method and other scanpath pre-
diction models on the AiR datasets regarding ScanMatch, SS, and
MultiMatch. In each panel, the first row indicates the correct scan-
paths and the second row indicates the incorrect scanpaths. ‘Human’
refers to human performance.

Method ScanMatch↑ SS↑ MultiMatch↑
Vector Direction Length Position

Human
0.4165 0.4807 0.9407 0.7411 0.9332 0.8735
0.3994 0.4611 0.9366 0.7478 0.9280 0.8591

SaltiNet
0.1244 0.2219 0.9502 0.6673 0.9491 0.6990
0.1297 0.2211 0.9503 0.6825 0.9388 0.7002

PathGAN
0.1824 0.2524 0.9442 0.6377 0.9283 0.7693
0.1839 0.2375 0.9443 0.6323 0.9242 0.7483

IOR-ROI
0.1711 0.2667 0.9396 0.7475 0.9326 0.7417
0.1803 0.2717 0.9389 0.7590 0.9318 0.7418

VQA
0.3726 0.4648 0.9324 0.6900 0.9302 0.7647
0.3532 0.4290 0.9322 0.7030 0.9313 0.7663

Ours
0.3859 0.4759 0.9490 0.7052 0.9325 0.8602
0.3608 0.4313 0.9493 0.7000 0.9342 0.8593

4.4 Model Mechanisms that Resemble Human Behavior
Learned Inhibition of Return. In contrast to previous work, our
model incorporated the influence of all historical fixations to predict
the current fixation. To investigate our model’s mechanism for pro-
cessing historical fixation information, we set the model’s output of
previous fixations to specific regions of the image and observed the
resulting effects on subsequent fixations. Fig. 7 illustrates the aver-
age changes in the subsequent fixation probability map by placing
the sequence of previous fixations in specific regions of the image,
calculated across all images in the OSIE dataset. We set up six sets
of such experiments, placing the first five fixations at the image’s
upper-left, upper-center, upper-right, lower-left, lower-center, and
lower-right. Each square in the probability map represents the sam-
pling area for the first five fixations. Each probability map shows
the change in the subsequent fixation probability at each pixel for
the corresponding setting. It can be observed that when we placed

Table 3: Comparison between our method and other scanpath predic-
tion models on the COCOSearch18 datasets regarding ScanMatch,
SS, and MultiMatch. ‘Human’ refers to human performance.

Method ScanMatch↑ SS↑
MultiMatch↑

Vector Direction Length Position

Human 0.6781 0.7240 0.9744 0.7428 0.9707 0.9646

SaltiNet 0.4771 0.5358 0.9755 0.5287 0.9768 0.9195

PathGAN 0.5216 0.6236 0.9774 0.5594 0.9744 0.9229

IOR-ROI 0.4434 0.4716 0.7638 0.5105 0.7632 0.7220

VQA 0.6294 0.6583 0.9109 0.6570 0.9063 0.8738

Ours 0.6341 0.6596 0.9803 0.6476 0.9763 0.9625

the first five fixations in a certain region, the probability of subse-
quent fixations falling in that region was significantly reduced. This
indicates that, during the prediction process, the fixation probability
of the previously attended regions is significantly inhibited, which is
consistent with the “inhibition of return” mechanism demonstrated
in human visual psychophysics [36].
Self-Attention of fixation queries. To further investigate the inter-
nal mechanisms of the model, we visualized the attention weights
in the self-attention module of the fixation decoder during scanpath
prediction. This was done to observe the specific influence patterns
between fixation queries when making saccadic decisions. Since the
fixation queries are arranged in the temporal dimension, the current
fixation query is only influenced by historical fixations. Therefore,
the overall attention weight map forms a lower triangular shape. As
shown in Fig. 8, in the temporal dimension, attention weights are
higher for the nearest fixation to the current fixation query, indicat-
ing that the most recently observed areas have the most significant
impact on current fixations. The attentional pattern of the model
is highly consistent with human visual working memory (VWM).
Historical information naturally decays over time, with the most
recently observed areas having higher activation strength in the vi-
sual system. Additionally, in the attention map, the initial fixation



Table 4: Ablation results for different models in the SALICON and OSIE datasets. The best prediction results are highlighted in bold, and the
second-best results are highlighted in underlined.

SALICON Dataset OSIE Dataset

Method ScanMatch↑ SS↑ MultiMatch↑ ScanMatch↑ SS↑ MultiMatch↑
Vector Direction Length Position Vector Direction Length Position

Ours 0.3131 0.3663 0.9406 0.6458 0.9248 0.8344 0.3985 0.4369 0.9463 0.6619 0.9342 0.8478

w/o pre-trained in saliency 0.2855 0.3320 0.9453 0.6080 0.9267 0.8236 0.3259 0.3754 0.9482 0.6080 0.9325 0.8157
w/o restrain 0.2863 0.3417 0.9399 0.6387 0.9247 0.8230 0.3619 0.4044 0.9445 0.6462 0.9318 0.8340
w/o encoder 0.3041 0.3578 0.9368 0.6507 0.9236 0.8277 0.3873 0.4232 0.9413 0.6610 0.9282 0.8389

w/o autoregression 0.2956 0.3471 0.9391 0.6416 0.9202 0.8283 0.3666 0.4016 0.9432 0.6552 0.9273 0.8345
w/o self-attention in decoder 0.2880 0.3379 0.9384 0.6501 0.9232 0.8192 0.3556 0.3864 0.9425 0.6652 0.9278 0.8216

( a ) ( b ) ( c )

( f )( e )( d )

Figure 7: Probability discrepancy map of subsequent fixations after
fixing the first five fixation locations. The red squares represent the
region where the first five fixations are sampled.

receives more attention, consistent with human observation patterns.
When we observe a scene, the brain rapidly integrates preliminary
visual information to form an overall perception of the environ-
ment. This perception influences people’s subsequent observation
and interpretation of the finer details [5].

4.5 Ablation Studies
We conducted ablation experiments to demonstrate the effectiveness
of different components and configurations. The experiments were
conducted on the SALICON validation set and OSIE dataset.
Visual Feature-related components. For the feature extractor mod-
ule, we employed a saliency pre-trained network for feature extrac-
tion and further optimized the feature maps with saliency spatial
attention operation. We compare the results of using a VGG-19
feature extraction network pre-trained on an image classification
task instead of a saliency feature extractor and a model without
saliency spatial attention operation, as shown in Table. 4 with “w/o
pre-trained in saliency” and “w/o restrain”. The benefit of saliency
feature extraction for predicting more reasonable scanpaths is signif-
icant, and saliency spatial attention operation is also more beneficial
for improving the performance of the model. In addition, the exper-
imental performance of “w/o encoder” suggests that it is advanta-
geous to use the visual encoder after the saliency feature extractor
module to learn the global correlation between regions. Still, this
module has a relatively small impact on the overall performance.
Fixation-related components. For the fixation decoder module, we
predicted fixations one by one in an autoregressive manner, where
the location of the previous fixation was used to initialize the fixation
query for the next fixation. However, this is not the sole method, and
the experimental results of initializing all fixation queries randomly
were labeled as “w/o autoregression” which showed that predicting
fixations one by one in an autoregressive manner is more effective.
In addition, we also verified the effectiveness of modeling the cor-
relation between all historical fixations and the current fixation in
the fixation decoder, and the experimental results were labeled as

“w/o self-attention in the decoder”. The experimental results showed
that removing self-attention from the decoder led to a significant
decrease in performance, indicating that it is crucial to consider the
effect of historical fixations.

Figure 8: Visualization of the attention between fixations. Each row
represents the attention of the current fixation with others. The values
represent the attention weights.

5 LIMITATIONS AND FUTURE WORK

In task-driven visual exploration scenarios, we abstract the task’s
influence in the form of guidance maps, which can be further investi-
gated to incorporate inputs from different modalities of the task. We
proposed a novel Visual ScanPath Transformer to predict people’s vi-
sual scanpaths in both free-viewing and task-driven scenarios. When
predicting the scanpaths, we only focus on the fixation locations
and orders, ignoring the duration of each fixation. In the future, we
will predict the accurate duration for each fixation, and analyze the
influence of fixation duration on the whole fixation sequence.

6 CONCLUSION

We propose VSPT, a novel deep-learning-based visual scanpath
prediction model that is applicable to both free-viewing and task-
driven visual exploration. We integrate the saliency of low-level
visual stimuli with contextual semantic constraints and learn the
influence of historical fixations on saccade decisions by modeling
the dependencies between fixation, significantly simplifying the
scanpath workflow and the overall model architecture. Experiments
show that VSPT can simulate the decision-making process during
human exploration of visual scenes and outperforms the current
state-of-the-art in both free-viewing and task-driven (goal-driven
and question-driven) visual scenarios. Advances in visual scanpath
prediction performance will contribute to the application of eye-
tracking technology in virtual reality/augmented reality, enhancing
human-computer interaction (HCI) and rendering quality.
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